25 x X = 0
|x+25|+|−y+5|=0
⇒|x+25|=0 và |−y+5|=0
+) |x+25|=0
⇒x+25=0
⇒x=−25
+) |−y+5|=0
⇒−y+5=0
⇒−y=−5
⇒y=5
Vậy cặp số (x;y) là (−25;5)
Những câu b-f thì chia ra làm 2 vế rồi tính
g thì tìm ước rồi lập bảng trường hợp trong ước
h. (2x−1).(4y−2)=−42(2x−1).(4y−2)=−42
⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)
Mà: Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}
Ta có một số trường hợp sau :
2x−12x−1 | 1 | -1 | 2 | -2 | 3 | -3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(4y−2)=2(2y−1)(4y−2)=2(2y−1) | -1 | 1 | -2 | 2 | -|x+25|+|−y+5|=0 ⇒|x+25|=0 và |−y+5|=0 +) |x+25|=0 ⇒x+25=0 ⇒x=−25 +) |−y+5|=0 ⇒−y+5=0 ⇒−y=−5 ⇒y=5 Vậy cặp số (x;y) là (−25;5)
Những câu b-f thì chia ra làm 2 vế rồi tính g thì tìm ước rồi lập bảng trường hợp trong ước
h. (2x−1).(4y−2)=−42(2x−1).(4y−2)=−42 ⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)⇒{2x−1∈Ư(−42)4y−2∈Ư(−42) Mà: Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42} Ta có một số trường hợp sau :
|
bài 19: tìm x
a) 5 . ( x - 7 ) = 0
b) 25 ( x - 4 ) = 0
c) ( 34 - 2x ) . ( 2x - 6 ) = 0
d) ( 2019 - x ) . ( 3x - 12 ) 0
e) 57 . ( 9x - 27 ) = 0
f) 25 + ( 15 - x ) = 30
g) 43 - ( 24 - x ) = 20
h) 2 . ( x - 5 ) - 17 = 25
i) 3 . ( x + 7 ) - 15 = 27
j) 15 + 4 . ( x - 2 ) = 95
k) 20 - ( x + 14 ) = 5
l) 14 + 3 . ( 5 - x ) = 27
a) \(5\left(x-7\right)=0\)
\(\Rightarrow x-7=0\)
\(\Rightarrow x=7\)
b) \(25\left(x-4\right)=0\)
\(\Rightarrow x-4=0\)
\(\Rightarrow x=4\)
c) \(\left(34-2x\right)\left(2x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}34-2x=0\\2x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=34\\2x=6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=17\\x=3\end{matrix}\right.\)
d) \(\left(2019-x\right)\left(3x-12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2019-x=0\\3x-12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2019\\3x=12\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2019\\x=\dfrac{12}{3}=4\end{matrix}\right.\)
e) \(57\left(9x-27\right)=0\)
\(\Rightarrow9x-27=0\)
\(\Rightarrow9\left(x-3\right)=0\)
\(\Rightarrow x-3=0\)
\(\Rightarrow x=3\)
a) 5.(x-7)=0⇔x-7=0⇔x=7
b) 25(x-4)=0⇔x-4=0⇔x=4
c) (34-2x).(2x-6)=0
⇔ 34-2x=0 hoặc 2x-6=0
⇔2x=34 hoặc 2x=6
⇔ x=17 hoặc x=3
d) (2019-x).(3x-12)=0
⇔ 2019-x=0 hoặc 3x-12=0
⇔ x=2019 hoặc x=4
e) 57.(9x-27)=0
⇔ 9x-27=0
⇔ x=3
f) 25+(15-x)=30
⇔ 15-x=5
⇔ x=10
g) 43-(24-x)=20
⇔ 24-x=23
⇔ x=1
h) 2.(x-5)-17=25
⇔ 2(x-5)=42
⇔x-5=21
⇔ x=26
i) 3(x+7)-15=27
⇔ 3(x+7)=42
⇔ x+7=14
⇔ x=7
j) 15+4(x-2)=95
⇔ 4(x-2)=80
⇔ x-2=20
⇔ x=22
k) 20-(x+14)=5
⇔ x+14=15
⇔ x=1
l) 14+3(5-x)=27
⇔ 3(5-x)=13
⇔ 5-x=13/3
⇔ x=5-13/3
⇔ x=2/3
Tìm \(x\)
a, \(x^2-10x+25=0\)
b, \(x^2-8x+16=0\)
c, \(x^2-49=0\)
d, \(4x^2-25=0\)
`a, x^2-10x+25=0`
`<=>x^2 -2.x.5+5^2=0`
`<=>(x-5)^2=0`
`<=>x-5=0`
`<=>x=5`
__
`x^2 -8x+16=0`
`<=> x^2 - 2.x.4+4^2=0`
`<=>(x-4)^2=0`
`<=>x-4=0`
`<=>x=4`
__
`x^2-49=0`
`<=>x^2 - 7^2=0`
`<=>(x-7)(x+7)=0`
`<=>x-7=0` hoặc `x+7=0`
`<=> x=7` hoặc `x=-7`
__
`4x^2-25=0`
`<=> (2x)^2 -5^2=0`
`<=>(2x-5)(2x+5)=0`
`<=>2x-5=0` hoặc `2x+5=0`
`<=> 2x=5` hoặc `2x=-5`
`<=>x=5/2` hoặc `x=-5/2`
a: =>(x-5)^2=0
=>x-5=0
=>x=5
b: =>(x-4)^2=0
=>x-4=0
=>x=4
c: =>(x-7)(x+7)=0
=>x-7=0 hoặc x+7=0
=>x=7 hoặc x=-7
d: =>(2x-5)(2x+5)=0
=>2x-5=0 hoặc 2x+5=0
=>x=5/2 hoặc x=-5/2
(x+9)×(x^2-25)=0
(x-7).(16+x^2).(25-x^2)=0
\((x+9)(x^2-25)=0\)
\(\Rightarrow\orbr{\begin{cases}x+9=0\\x^2-25=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-9\\x\in\left\{-5;5\right\}\end{cases}}}\)
\((x-7)(16+x^2)(25-x^2)=0\)
\(\Rightarrow\hept{\begin{cases}x-7=0\\16+x^2=0\\25-x^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=7\left(TM\right)\\x^2=-16\left(KTM\right)\\x\in\left\{-5;5\right\}\end{cases}}}\)
Học tốt!
a) 25 - y^2 = 8(x+2009)^2 \Leftrightarrow 8(x+2009)^2 + y^2 = 25
Do y^2 \geq 0 \Rightarrow (x+2009)^2 \leq 25/8
\Rightarrow x+2009 =0 hoặc 1
Nếu x+2009 = 1 \Rightarrow 25 - y^2 = 1\Rightarrow y^2 = 26 (không tìm được y)
Nếu x+2009 = \Rightarrow 25 - y^2 = 0\Rightarrow y^2 = 25, y=5
Vậy (x=0;y=5)
tìm x
a) ( x-55). 17=0
b) 25.(x-75)=25
c) (x-5)(x-7)=0
d)(x-11)(x+17)=0
a) ( x- 55 ) . 17 = 0
x - 55 = 0 : 17
x - 55 = 0
x = 0 + 55
x = 55
Vậy x = 55
b) 25 . ( x - 75 ) = 25
x - 75 = 25 : 25
x - 75 = 1
x = 1 + 75
x = 76
Vậy x = 76
c) ( x - 5 ) ( x - 7 ) = 0
=> x - 5 = 0 hoặc x - 7 = 0
x = 0 + 5 x = 0 + 7
x = 5 x = 7
Vậy \(x\in\left\{5;7\right\}\)
d) ( x -11 ) ( x + 17 ) = 0
=> x - 11 = 0 hoặc x + 17 = 0
x = 0 + 11 x = 0 - 17
x = 11 x = -17
Vậy \(x\in\left\{11;-17\right\}\)
a,( x-55).17=0
x-55=0:17
x-55=0
x=0+55
x=55
b,25.(x-75)=25
x-75=25:25
x-75=1
x=75+1
x=76
TÍNH NHANH
12 , 48 : 0, 5 x 6 , 25 x 4 x 2
-------------------------------------------
2 x 3 , 12 x 1 , 25 : 0 , 25 x 10
Rút gọn biểu thức chứa chữ A = (1/√x -1 + 1/√x +1 ) : 1/√x -1 với x lớn hơn hoặc bằng 0 , x khác 1 B = 2√x /√x -5 - x -25√x / 25 -x với lớn hơn hoặc bằng 0 , x khác 25
\(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right):\dfrac{1}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{1}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)
Tìm x biết
a) (x^2 + 5 ) . ( x^2 - 25 ) = 0
b) ( x^2 -5 ) . (x^2 - 25 ) < 0
c) (x-2) . ( x+1) = 0
a, (x2 + 5)(x2 - 25) = 0
\(\Rightarrow\left[\begin{matrix}x^2+5=0\\x^2+25=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x^2=-5\left(loại\right)\\x^2=-25\left(loại\right)\end{matrix}\right.\)
Vậy \(x=\varnothing\)
b, (x2 - 5)(x2 - 25) < 0
<=> x2 - 5 và x2 - 25 trái dấu
Ta thấy x2 - 5 > x2 - 25 nên \(\left\{\begin{matrix}x^2-5>0\\x^2-25< 0\end{matrix}\right.\) <=> x < 5
c, (x - 2)(x + 1) = 0
\(\Rightarrow\left[\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Vậy \(x\in\left\{2;-1\right\}\)
tìm số nguyên x biết (x^2+5):(x^2-25)=0
b,(x^2-5):(x^2-25)<0
a, => x^2+5 = 0
=> x^2=-5 ( vô lí vì x^2 >= 0)
=> ko tồn tại x tm bài toán
b, Vì x^2-5 > x^2-25
Mà (x^2-5): (x^2-25) < 0
=> x^2-5 >0 và x^2-25 <0
=> 5 < x^2 < 25
=> \(x>\sqrt{5}\)hoặc \(x< -\sqrt{5}\) và -5 < x < 5
=> -5 < x < -\(\sqrt{5}\)hoặc \(\sqrt{5}\)< x < 5
k mk nha