Những câu hỏi liên quan
TN
Xem chi tiết
ML
9 tháng 8 2016 lúc 21:41

\(\hept{\begin{cases}2yz\le y^2+z^2\\2zx\le z^2+x^2\\2xy\le x^2+y^2\end{cases}}\)

\(VT\ge\frac{x^2}{x^2+y^2+z^2}+\frac{y^2}{x^2+y^2+z^2}+\frac{z^2}{x^2+y^2+z^2}=1\)

Bình luận (0)
LD
Xem chi tiết
NL
3 tháng 6 2019 lúc 18:48

Đặt \(\left\{{}\begin{matrix}\frac{x}{y}=a\\\frac{y}{z}=b\\\frac{z}{x}=c\end{matrix}\right.\) \(\Rightarrow abc=1\)

\(P=\frac{2b}{c}+\frac{2c}{a}+\frac{2a}{b}-a-b-c-\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\)

\(P=2ab^2+2bc^2+2a^2c-a-b-c-\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\)

\(ab^2+a\ge2ab\Rightarrow ab^2\ge2ab-a\) ; \(ab^2+\frac{1}{a}\ge2b\Rightarrow ab^2\ge2b-\frac{1}{a}\)

\(\Rightarrow2ab^2\ge2ab+2b-a-\frac{1}{a}\)

Tương tự và cộng lại:

\(\Rightarrow P\ge2\left(ab+ac+bc\right)+2\left(a+b+c\right)-2\left(a+b+c\right)-2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow P\ge\frac{2\left(ab+ac+bc\right)}{abc}-2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\) hay \(x=y=z\)

Bình luận (0)
VV
Xem chi tiết
GL
4 tháng 6 2019 lúc 21:07

Áp dụng bất đẳng thức Cauchy-Schwarz,ta có:

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{\left(x+y+z\right)^2}=\frac{9}{9}=1.\)(đpcm)

Bình luận (0)
TD
4 tháng 6 2019 lúc 21:09

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2xy+2xz+2yz}=\frac{9}{\left(x+y+z\right)^2}=1\)

( áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\))

Bình luận (0)
GL
4 tháng 6 2019 lúc 21:12

Dấu "=" xảy ra khi x=y=z=1

Bình luận (0)
TN
Xem chi tiết
HN
19 tháng 8 2016 lúc 9:49

Áp dụng bđt \(\frac{m^2}{a}+\frac{n^2}{b}+\frac{p^2}{c}\ge\frac{\left(m+n+p\right)^2}{a+b+c}\) (bạn tự chứng minh)

Được : \(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)

\(\Rightarrow\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge1\) (đpcm)

 

Bình luận (0)
VT
19 tháng 8 2016 lúc 9:50

Ta có : \(\begin{cases}2yz\le y^2+z^2\\2zx\le z^2+x^2\\2xy\le x^2+y^2\end{cases}\)

\(VT\ge\frac{x^2}{x^2+y^2+z^2}+\frac{y^2}{x^2+y^2+z^2}+\frac{z^2}{x^2+y^2+z^2}=1\)

Bình luận (0)
ND
Xem chi tiết
H24
Xem chi tiết
NT
6 tháng 3 2019 lúc 22:04

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Leftrightarrow\frac{xy+yz+zx}{xyz}=0\) \(\Rightarrow xy+yz+zx=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=-\left(yz+zx\right)\\yz=-\left(xy+zx\right)\\zx=-\left(xy+yz\right)\end{matrix}\right.\)

Thay vào ta có:

\(\frac{1}{x^2+2yz}=\frac{1}{x^2+yz+yz}=\frac{1}{x^2-xy+yz-zx}=\frac{1}{\left(x-z\right)\left(x-y\right)}\)

CMTT:

\(PT\Leftrightarrow\frac{1}{\left(x-y\right)\left(x-z\right)}+\frac{1}{\left(x-y\right)\left(z-y\right)}+\frac{1}{\left(z-y\right)\left(z-x\right)}\)

\(\Leftrightarrow\frac{\left(z-y\right)+\left(x-z\right)-\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(z-y\right)}=0\left(đpcm\right)\)

Bình luận (0)
NL
Xem chi tiết
LP
22 tháng 4 2019 lúc 16:02

\(P=\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\)
\(P=\frac{\left[\left(\frac{x}{\sqrt{x^2+2yz}}\right)^2+\left(\frac{y}{\sqrt{y^2+2xz}}\right)^2+\left(\frac{z}{\sqrt{z^2+2xy}}\right)^2\right]\left[\sqrt{x^2+2yz}^2+\sqrt{y^2+2xz}^2+\sqrt{z^2+2xy}^2\right]}{x^2+2yz+y^2+2xz+z^2+2xy}\)

\(P\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)(Bunyakovski)

Dấu "=" xảy ra <=> \(\frac{x}{x^2+2yz}=\frac{y}{y^2+2xz}=\frac{z}{z^2+2xy}\Leftrightarrow x=y=z\)

Vậy GTNN P=1 <=> x=y=z

Bình luận (0)
LP
22 tháng 4 2019 lúc 16:20

Ngay ở trên hai cái [...] [...] nhân với nhau ấy, tại nó dài quá 

Bình luận (0)
NT
14 tháng 10 2020 lúc 18:39

toàn lớp 8e trường trung học cơ sở đan phượng đẹp trai nhất hanhdf tinh đêyy

Bình luận (0)
 Khách vãng lai đã xóa
LD
Xem chi tiết
KS
16 tháng 4 2019 lúc 17:54

Bạn tự c/m BĐT : \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)

Dấu " = " xảy ra ta có:

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2zx}+\frac{1}{z^2+2xy}\ge\frac{\left(1+1\right)^2}{x^2+y^2+2yz+2zx}+\frac{1}{z^2+2xy}\)\(\ge\frac{\left(1+1+1\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=\frac{9}{\left(x+y+z\right)^2}=\frac{9}{1}=9\)

Bạn tự giải dấu bằng nhé.

Bình luận (0)
NL
Xem chi tiết
LH
23 tháng 8 2019 lúc 11:27

Vs x,y,z>0 .Áp dụng bđt Svac-xơ có:

\(P=\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge\frac{\left(x+y+z\right)^2}{x^2+2yz+y^2+2xz+z^2+2xy}\)

<=> P\(\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}\)

<=> P\(\ge1\)

Dấu "=" xảy ra<=> x=y=z=1

Vậy minP=1 <=> x=y=z=1

Bình luận (0)
TP
23 tháng 8 2019 lúc 11:28

Solution:

Áp dụng BĐT Cauchy-Schwarz :

\(P\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)

Bình luận (0)