TN

Cho x, y, z > 0. CM: \(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2zx}+\frac{z^2}{z^2+xy}\ge1\)

HN
19 tháng 8 2016 lúc 9:49

Áp dụng bđt \(\frac{m^2}{a}+\frac{n^2}{b}+\frac{p^2}{c}\ge\frac{\left(m+n+p\right)^2}{a+b+c}\) (bạn tự chứng minh)

Được : \(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)

\(\Rightarrow\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge1\) (đpcm)

 

Bình luận (0)
VT
19 tháng 8 2016 lúc 9:50

Ta có : \(\begin{cases}2yz\le y^2+z^2\\2zx\le z^2+x^2\\2xy\le x^2+y^2\end{cases}\)

\(VT\ge\frac{x^2}{x^2+y^2+z^2}+\frac{y^2}{x^2+y^2+z^2}+\frac{z^2}{x^2+y^2+z^2}=1\)

Bình luận (0)

Các câu hỏi tương tự
NV
Xem chi tiết
NV
Xem chi tiết
AD
Xem chi tiết
CW
Xem chi tiết
LC
Xem chi tiết
TM
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
NK
Xem chi tiết