\(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2zx}+\frac{z^2}{z^2+2xy}\ge\frac{\left(x+y+z\right)^2}{x^2+2yz+y^2+2zx+z^2+2xy}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)
\(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2zx}+\frac{z^2}{z^2+2xy}\ge\frac{\left(x+y+z\right)^2}{x^2+2yz+y^2+2zx+z^2+2xy}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)
Cho x, y, z > 0. CM: \(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2zx}+\frac{z^2}{z^2+2xy}\ge1\)
cho x,y,z và x+y+z=3. Chứng minh \(\frac{1}{x^2+2yz}+\frac{1}{y^2+2zx}+\frac{1}{z^2+2xy}\ge1\)
Cho các số thực dương a,b,c. Tìm Min của:
\(P=\frac{x}{\sqrt{2xy+y^2}}+\frac{y}{\sqrt{2yz+z^2}}+\frac{z}{\sqrt{2zx+x^2}}\)
Cho x,y,z>0 t/m \(15\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)=10\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)+2014\). Tìm Max P=\(\frac{1}{\sqrt{5x^2+2xy+2yz}}+\frac{1}{\sqrt{5y^2+2yz+2zx}}+\frac{1}{\sqrt{5z^2+2zx+2xy}}\)
Cho x,y,z>0 thỏa mãn x+y+z=3.Chứng minh rằng:
\(\frac{x^2}{\sqrt{5x^2+2xy+y^2}}+\frac{y^2}{\sqrt{5y^2+2yz+z^2}}+\frac{z^2}{\sqrt{5z^2+2zx+x^2}}\ge\frac{3}{2\sqrt{2}}\)
cho \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
tính giá trị A=\(\frac{yz}{x^2+2yz}+\frac{zx}{y^2+2zx}+\frac{xy}{z^2+2xy}\)
Cho \(x,y,z>0\)và \(x+y+z\le xyz\). Tìm giá trị lớn nhất của biểu thức :
\(P=\frac{1}{x^2+2yz}+\frac{1}{y^2+2zx}+\frac{1}{z^2+2xy}\)
Cho ba số thựcx,y,z đôi một khác nhau thỏa mãn điều kiện \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Tính giá trị biểu thức:
\(M=\frac{yz}{x^2+2yz}+\frac{zx}{y^2+2zx}+\frac{xy}{z^2+2xy}\)
cho x+y+z=4
cmr \(\frac{1}{xy}+\frac{1}{yz}\ge1\)
BL
TA CẦN CM \(\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge1\Leftrightarrow\frac{1}{y}+\frac{1}{z}\ge x\)
mà x=\(4-\left(y+z\right)\)
\(\Rightarrow\frac{1}{y}+\frac{1}{z}\ge4-\left(y+z\right)\Leftrightarrow\frac{1}{y}-2+y+\frac{1}{z}-2+z\ge0\)
\(\Leftrightarrow\left(\frac{1}{\sqrt{y}}-\sqrt{y}\right)^2+\left(\frac{1}{\sqrt{z}}-\sqrt{z}\right)^2\ge0\)(luôn đúng)