sin 2x-cos2x-2sin x+1=0
1+cosx+cos2x+cos3x=0
sinx+sin3x+sin5x=cosx+cos3x+cos5x
sin^2x + sin^2(3x) = 2sin^2(2x)
mọi người giúp mình giải phương trình này với mình cảm ơn
a/
\(\Leftrightarrow1+cos2x+cos3x+cosx=0\)
\(\Leftrightarrow2cos^2x+2cos2x.cosx=0\)
\(\Leftrightarrow2cosx\left(cosx+cos2x\right)=0\)
\(\Leftrightarrow2cosx\left(2cos^2x+cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=-1\\cosx=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow...\)
b/
\(\Leftrightarrow2sin3x.cosx+sin3x=2cos3x.cosx+cos3x\)
\(\Leftrightarrow sin3x\left(2cosx+1\right)-cos3x\left(2cosx+1\right)=0\)
\(\Leftrightarrow\left(sin3x-cos3x\right)\left(2cosx+1\right)=0\)
\(\Leftrightarrow\sqrt{2}sin\left(3x-\frac{\pi}{4}\right)\left(2cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(3x-\frac{\pi}{4}\right)=0\\cosx=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow...\)
c/
\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos6x=1-cos4x\)
\(\Leftrightarrow cos6x+cos2x-2cos4x=0\)
\(\Leftrightarrow2cos4x.cos2x-2cos4x=0\)
\(\Leftrightarrow2cos4x\left(cos2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos2x=1\end{matrix}\right.\) \(\Leftrightarrow...\)
giải pt
a) \(sin^2x+2sin^22x+sin^23x-2=0\)
b) \(2cosx.cos\left(x+\frac{\pi}{3}\right)+\sqrt{3}sin2x=1\)
c) \(5\left(1+cosx\right)=2+sin^4x-cos^4x\)
d) \(1+cot2x=\frac{1-cos2x}{sin^22x}\)
a/
\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos6x-2\left(1-sin^22x\right)=0\)
\(\Leftrightarrow1-\frac{1}{2}\left(cos6x+cos2x\right)-2cos^22x=0\)
\(\Leftrightarrow1-cos4x.cos2x-2cos^22x=0\)
\(\Leftrightarrow2cos^22x-1+cos4x.cos2x=0\)
\(\Leftrightarrow cos4x+cos4x.cos2x=0\)
\(\Leftrightarrow cos4x\left(cos2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos2x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=\frac{\pi}{2}+k\pi\\2x=\pi+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+\frac{k\pi}{4}\\x=\frac{\pi}{2}+k\pi\end{matrix}\right.\)
b/
\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)+cos\left(\frac{\pi}{3}\right)+\sqrt{3}sin2x=1\)
\(\Leftrightarrow cos2x.cos\left(\frac{\pi}{3}\right)-sin2x.sin\left(\frac{\pi}{3}\right)+\frac{1}{2}+\sqrt{3}sin2x=1\)
\(\Leftrightarrow\frac{1}{2}cos2x+\frac{\sqrt{3}}{2}sin2x=\frac{1}{2}\)
\(\Leftrightarrow cos\left(2x-\frac{\pi}{3}\right)=\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=\frac{\pi}{3}+k2\pi\\2x-\frac{\pi}{3}=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=k\pi\end{matrix}\right.\)
c/
\(\Leftrightarrow5+5cosx=2+\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)\)
\(\Leftrightarrow3+5cosx=sin^2x-cos^2x\)
\(\Leftrightarrow3+5cosx=1-cos^2x-cos^2x\)
\(\Leftrightarrow2cos^2x+5cosx+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=-2\left(l\right)\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{2\pi}{3}+k2\pi\\x=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
a)\(\dfrac{2sin^2\left(\dfrac{3x}{2}-\dfrac{\pi}{4}\right)+\sqrt{3}cos^3x\left(1-3tan^2x\right)}{2sinx-1}=-1\)
b)\(\dfrac{2sin2x-cos2x-7sinx+4+\sqrt{3}}{2cosx+\sqrt{3}}=1\)
c)\(\dfrac{\left(1+sinx+cos2x\right)sin\left(x+\dfrac{\pi}{4}\right)}{1+tanx}=\dfrac{1}{\sqrt{2}}cosx\)
d)\(\left(\sqrt{3}sin2x+1\right)\left(2sinx-1\right)+sin3x-cos2x-sinx=0\)
a, ĐK: \(x\ne\dfrac{5\pi}{6}+k2\pi;x\ne\dfrac{\pi}{6}+k2\pi\)
\(\dfrac{2sin^2\left(\dfrac{3x}{2}-\dfrac{\pi}{4}\right)+\sqrt{3}cos^3x\left(1-3tan^2x\right)}{2sinx-1}=-1\)
\(\Leftrightarrow2sin^2\left(\dfrac{3x}{2}-\dfrac{\pi}{4}\right)+\sqrt{3}cos^3x\left(1-3tan^2x\right)=1-2sinx\)
\(\Leftrightarrow-cos\left(3x-\dfrac{\pi}{2}\right)+\sqrt{3}cos^3x.\dfrac{cos^2x-3sin^2x}{cos^2x}=-2sinx\)
\(\Leftrightarrow-sin3x+\sqrt{3}cosx.\left(cos^2x-3sin^2x\right)=-2sinx\)
\(\Leftrightarrow-sin3x+\sqrt{3}cosx.\left(4cos^2x-3\right)=-2sinx\)
\(\Leftrightarrow-sin3x+\sqrt{3}cos3x=-2sinx\)
\(\Leftrightarrow\dfrac{1}{2}sin3x-\dfrac{\sqrt{3}}{2}cos3x-sinx=0\)
\(\Leftrightarrow sin\left(3x-\dfrac{\pi}{3}\right)-sinx=0\)
\(\Leftrightarrow2cos\left(2x-\dfrac{\pi}{6}\right)sin\left(x-\dfrac{\pi}{6}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos\left(2x-\dfrac{\pi}{6}\right)=0\\sin\left(x-\dfrac{\pi}{6}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{6}=\dfrac{\pi}{2}+k\pi\\x-\dfrac{\pi}{6}=k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+\dfrac{k\pi}{2}\\x=\dfrac{\pi}{6}+k\pi\end{matrix}\right.\)
Đối chiếu điều kiện ta được:
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k\pi\\x=\dfrac{7\pi}{6}+k2\pi\\x=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)
Giải các phương trình lượng giác sau
a, 1 - sin4x - 5/3 cos4x =0
b, 2sin3x + cos2x = sinx
c, 4cos2x - cos3x =6cosx +2(1+cos2x)
a.
\(\Leftrightarrow\left(1-sin^2x\right)\left(1+sin^2x\right)-\frac{5}{3}cos^4x=0\)
\(\Leftrightarrow cos^2x\left(1+sin^2x\right)-\frac{5}{3}cos^4x=0\)
\(\Leftrightarrow cos^2x\left(3+3sin^2x-5cos^2x\right)=0\)
\(\Leftrightarrow cos^2x\left(3+\frac{3}{2}-\frac{3}{2}cos2x-\frac{5}{2}-\frac{5}{2}cos2x\right)=0\)
\(\Leftrightarrow cos^2x\left(2-4cos2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cos2x=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\frac{\pi}{6}+k\pi\\x=-\frac{\pi}{6}+k\pi\end{matrix}\right.\)
a)bung hằng đẳng thức số 3 ra còn 5/3cos^4(x) giữ lại
Sau đó (1-sin^2(x)) là cos^2x sau đó rút nhân tử chung là cos^2(x) ra ta được
cos^2(x)(1+sin^2(x)-5/3cos^2(x))=0
Cho từng vế = 0 rr giải
b)rút sin x ra nhưng giữ thg cos2x lại rr rút nhân tử chung là cos2x ta đc
cos2x(1-sinx)=0
Cho từng vế =0 rr giải
c)chém 4cos^2(x) ở hai vế hai bên thì chỉ còn
cos3x+6cosx=0 <=> 4cos^3(x)+3cosx=0
Bấm máy tìm cosx
b.
\(\Leftrightarrow2sin^3x+1-2sin^2x=sinx\)
\(\Leftrightarrow2sin^2x\left(sinx-1\right)-\left(sinx-1\right)=0\)
\(\Leftrightarrow\left(sinx-1\right)\left(2sin^2x-1\right)=0\)
\(\Leftrightarrow\left(1-sinx\right).cos2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sinx=1\end{matrix}\right.\) \(\Leftrightarrow...\)
c.
\(\Leftrightarrow2\left(1+cos2x\right)-cos3x=6cosx+2\left(1+cos2x\right)\)
\(\Leftrightarrow cos3x+6cosx=0\)
\(\Leftrightarrow4cos^3x-3cosx+6cosx=0\)
\(\Leftrightarrow cosx\left(4cos^2x+3\right)=0\)
\(\Leftrightarrow cosx=0\)
\(\Leftrightarrow...\)
1, Tìm GTLN M của hàm số y=a+b\(\sqrt{sinx}\) +c\(\sqrt{cosx}\); x\(\in\)(0;pi/4).a^2+b^2+c^2=4 2, giải pt sin3x-4sinx.cos2x=0
3,tập nghiệm của phương trình sin^2x cosx=0
4, giải pt \(\sqrt{3}\)sin2x+2sin^2x=3
5,pt 2sin^2x-5sinx.cosx-cos^2x=-2 tương đương với pt nào
6,nghiệm của pt sĩn+cosx-2sinx.cosx+1=0
7, tất cả các nghiệm của pt sin3x-cosx=0
8, số nghiệm của pt sin2x-cos2x=3sinx+cosx-2 trong khoảng(0;pi/2)
9, tìm m để pt 2sin^2x+msin2x=2m vô nghiệm
10, tổng các nghiệm của pt sin(x+pi/4)+sin(x-pi/4)=0 thuộc khoảng (0;4pi)
1.
Đề là \(x\in\left(0;\frac{\pi}{4}\right)\) hay \(x\in\left[0;\frac{\pi}{4}\right]\) ?
2.
\(sin3x-4sinx.cos2x=0\)
\(\Leftrightarrow sin3x-\left(2sin3x-2sinx\right)=0\)
\(\Leftrightarrow2sinx-sin3x=0\)
\(\Leftrightarrow2sinx-3sinx+4sin^3x=0\)
\(\Leftrightarrow sinx\left(4sin^2x-1\right)=0\)
\(\Leftrightarrow sinx\left(1-2cos2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cos2x=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\pm\frac{\pi}{6}+k\pi\end{matrix}\right.\)
3.
\(sin^2x.cosx=0\)
\(\Leftrightarrow sin2x=0\)
\(\Leftrightarrow x=\frac{k\pi}{2}\)
4.
\(\sqrt{3}sin2x+1-cos2x=3\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x=1\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)=1\)
\(\Leftrightarrow2x-\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\frac{\pi}{3}+k\pi\)
5.
Ko có 4 đáp án thì làm sao biết, có vô số pt tương đương với pt này :)
6.
\(sinx+cosx-2sinx.cosx+1=0\)
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\2sinx.cosx=t^2-1\end{matrix}\right.\)
Pt trở thành:
\(t+1-t^2+1=0\)
\(\Leftrightarrow-t^2+t+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow2sinx.cosx=t^2-1=0\)
\(\Leftrightarrow sin2x=0\)
\(\Leftrightarrow x=\frac{k\pi}{2}\)
chứng minh rằng
1) \(tanx=\frac{1-cos2x}{sin2x}\)
2)\(\frac{sin\left(60^0-x\right).cos\left(30^{0^{ }}-x\right)+cos\left(60^{0^{ }}-x\right).sin\left(30^{0^{ }}-x\right)}{sin4x}=\frac{1}{2sin2x}\)
3) \(4cos\left(60^0+a\right).cos\left(60^0-a\right)+2sin^2a=cos2a\)
1/
\(tanx=\frac{sinx}{cosx}=\frac{sin^2x}{sinx.cosx}=\frac{2sin^2x}{2sinx.cosx}\)
\(=\frac{2\left(\frac{1-cos2x}{2}\right)}{sin2x}=\frac{1-cos2x}{sin2x}\)
2/
\(\frac{sin\left(60-x\right)cos\left(30-x\right)+cos\left(60-x\right)sin\left(30-x\right)}{sin4x}=\frac{sin\left(60-x+30-x\right)}{sin4x}=\frac{sin\left(90-2x\right)}{2sin2x.cos2x}\)
\(=\frac{cos2x}{2sin2x.cos2x}=\frac{1}{2sin2x}\)
3/
\(4cos\left(60+a\right)cos\left(60-a\right)+2sin^2a\)
\(=2\left(cos\left(60+a+60-a\right)+cos\left(60+a-60+a\right)\right)+2sin^2a\)
\(=2cos120+2cos2a+2\left(\frac{1-cos2a}{2}\right)\)
\(=-1+2cos2a+1-cos2a=cos2a\)
a.3 cos x-3 + sin 2x(1-cosx)=0
b.cos 2x+sin x+cos x=0
c.sin 4x-2 cos2x=0
d.(3sin x-2)(cos x-1)=0
giải các phương trình sau :
a) \(\sin\left(x-\frac{2\pi}{3}\right)=\cos2x\) ; b) \(\tan\left(2x+45^o\right)\tan\left(180^o-\frac{x}{2}\right)=1\) ; c) \(\cos2x-\sin^2x=0\) ; d) \(5\tan x-2\cot x=3\) ; e)
\(\sin2x+\sin^2x=\frac{1}{2}\) ; f) \(\sin^2\frac{x}{2}+\sin x-2\cos^2\frac{x}{2}=\frac{1}{2}\) ; g) \(\frac{1+\cos2x}{\cos x}=\frac{\sin2x}{1-\cos2x}\)
mai đăng lại bài này nhé t làm cho h đi ngủ
\(cos2x-cos6x+4\left(3sinx-4sin^3x+1\right)=0\)
\(sin^2x-2sinx+2=sin^23x\)
\(sinx+cosx=\sqrt{2}\left(2-sin^32x\right)\)
\(\left(cos4x-cos2x\right)^2=5+sin3x\)
\(\sqrt{5+sin^23x}=sinx+2cosx\)
\(sinx-2sin2x-3sin3x=2\sqrt{2}\)
\(tanx+cotx=2sin\left(x+\frac{\pi}{4}\right)\)