Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NK
Xem chi tiết
PN
20 tháng 7 2016 lúc 19:44

Áp dụng bất đẳng thức  \(AM-GM\)  đối với từng bộ số trong  \(D\)  ta có:

\(D=\left(3x+\frac{12}{x}\right)+\left(y+\frac{16}{y}\right)+2\left(x+y\right)\ge2\sqrt{3x.\frac{12}{x}}+2\sqrt{y.\frac{16}{y}}+2.6=32\)

Dấu  \("="\)  xảy ra  khi và chỉ khi  \(\hept{\begin{cases}x+y=6\\3x=\frac{12}{x}\\y=\frac{16}{y}\end{cases}\Leftrightarrow}\)  \(\hept{\begin{cases}x=2\\y=4\end{cases}}\)

Vậy,  GTNN của  \(D\)  là  \(32\)  \(\Leftrightarrow\)  \(\hept{\begin{cases}x=2\\y=4\end{cases}}\)

Bình luận (0)
NK
Xem chi tiết
LA
20 tháng 7 2016 lúc 8:55

Hỏi đáp Toán

Bình luận (0)
LS
Xem chi tiết
CD
10 tháng 7 2018 lúc 21:14

1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4 
--> Pmin=4 khi x=4

Bình luận (0)
H24
4 tháng 5 2021 lúc 15:00

2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1

=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6

<=> M=2t2+t-4\(\ge\)2.12+1-4=-1

Mmin=-1 khi t=1 hay x=2

Bình luận (0)
 Khách vãng lai đã xóa
LS
Xem chi tiết
LS
Xem chi tiết
ND
Xem chi tiết
NL
19 tháng 3 2019 lúc 21:55

\(A=\frac{3x}{4}+\frac{1}{x}+\frac{2}{y^2}+y=\frac{x}{4}+\frac{1}{x}++\frac{2}{y^2}+\frac{y}{4}+\frac{y}{4}+\frac{x}{2}+\frac{y}{2}\)

\(\Rightarrow A\ge2\sqrt{\frac{x}{4}.\frac{1}{x}}+3\sqrt[3]{\frac{2}{y^2}.\frac{y}{4}.\frac{y}{4}}+\frac{1}{2}\left(x+y\right)=1+\frac{3}{2}+2=\frac{9}{2}\)

\(\Rightarrow A_{min}=\frac{9}{2}\) khi \(x=y=2\)

Bình luận (0)
HT
Xem chi tiết
BL
10 tháng 8 2019 lúc 8:31

\(A=\frac{x\sqrt{x}+26\sqrt{x}-19-2\sqrt{x}\left(\sqrt{x}+3\right)+\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}+x-4\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{x\sqrt{x}-x+16\sqrt{x}-16}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{x\left(\sqrt{x}-1\right)+16\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{\left(x+16\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{x+16}{\sqrt{x}+3}\)

+ \(A=\frac{x+16}{\sqrt{x}+3}=\frac{x-9+25}{\sqrt{x}+3}=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)+25}{\sqrt{x}+3}\) \(=\sqrt{x}-3+\frac{25}{\sqrt{x}+3}\)

\(=\sqrt{x}+3+\frac{25}{\sqrt{x}+3}-6\ge2\sqrt{\left(\sqrt{x}+3\right)\cdot\frac{25}{\sqrt{x}+3}}-6=10-6=4\)

Dấu "=" \(\Leftrightarrow\sqrt{x}+3=\frac{25}{\sqrt{x}+3}\Leftrightarrow\sqrt{x}+3=5\Leftrightarrow x=4\)

Vậy \(A=\frac{x+16}{\sqrt{x}+3}\)

Min A = 4 \(\Leftrightarrow x=4\)

Bình luận (0)
H24
10 tháng 8 2019 lúc 8:25
https://i.imgur.com/AT8lTUQ.jpg
Bình luận (0)
NH
Xem chi tiết
AH
30 tháng 6 2019 lúc 23:52

Lời giải:

a)

\(A=4x^2-4x+1=2x(2x-3)+2x+1=2x(2x-3)+(2x-3)+4\)

\(=(2x+1)(2x-3)+4\)

Với \(x\geq \frac{3}{2}\Rightarrow \left\{\begin{matrix} 2x+1>0\\ 2x-3\geq 0\end{matrix}\right.\Rightarrow A=(2x+1)(2x-3)+4\geq 4\)

Vậy GTNN của $A$ là $4$ khi $x=\frac{3}{2}$

b)

\(B=5x^2-10x+3=5(x^2-2x+1)-2\)

\(=5(x-1)^2-2\)

Ta thấy \((x-1)^2\geq 0, \forall x\geq 1\Rightarrow B=5(x-1)^2-2\geq -2\)

Vậy GTNN của $B$ là $-2$ khi $(x-1)^2=0\Leftrightarrow x=1$

Bình luận (0)
AH
30 tháng 6 2019 lúc 23:57

c)

\(C=4x^2-6x+2=(2x)^2-2.2x.\frac{3}{2}+(\frac{3}{2})^2-\frac{1}{4}\)

\(=(2x-\frac{3}{2})^2-\frac{1}{4}\)

Ta thấy \((2x-\frac{3}{2})^2\geq 0, \forall x\geq 0\Rightarrow C=(2x-\frac{3}{2})^2-\frac{1}{4}\geq -\frac{1}{4}\)

Vậy GTNN của $C$ là $\frac{-1}{4}$ khi \((2x-\frac{3}{2})^2=0\Leftrightarrow x=\frac{3}{4}\)

d)

\(D=3x^2+2x+1=3(x^2+\frac{2}{3}x+\frac{1}{9})+\frac{2}{3}\)

\(=3(x+\frac{1}{3})^2+\frac{2}{3}\)

Ta thấy \((x+\frac{1}{3})^2\geq 0, \forall x\geq -1\Rightarrow D=3(x+\frac{1}{3})^2+\frac{2}{3}\geq \frac{2}{3}\)

Vậy GTNN của $D$ là $\frac{2}{3}$ khi $(x+\frac{1}{3})^2=0\Leftrightarrow x=-\frac{1}{3}$

Bình luận (0)
ND
Xem chi tiết
DD
13 tháng 5 2019 lúc 16:29

Ta có : \(\left\{{}\begin{matrix}x\ge1\\y\ge2\\z\ge3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\sqrt{x-1}\ge0\\\sqrt{y-2}\ge0\\\sqrt{z-3}\ge0\end{matrix}\right.\Rightarrow\sqrt{x-1}+\sqrt{y-2}+\sqrt{z-3}\ge0\)

Đặt \(\sqrt{x-1}=a;\sqrt{y-2}=b;\sqrt{z-3}=c\)

\(\Rightarrow A=\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\)

\(\sum\frac{a}{a^2+1}=\sum\left(a-\frac{a^3}{a^2+1}\right)\ge\sum\left(a-\frac{a}{2}\right)=\frac{a+b+c}{2}\)

\(\Rightarrow A\ge\frac{\sqrt{x-1}+\sqrt{y-2}+\sqrt{z-3}}{2}=0\)

Vậy \(MIN_A=0\) khi \(x=1;y=2;z=3\)

Bình luận (0)
NL
13 tháng 5 2019 lúc 16:11

\(A=\frac{1.\sqrt{x-1}}{x}+\frac{1}{\sqrt{2}}.\frac{\sqrt{2}.\sqrt{y-2}}{y}+\frac{1}{\sqrt{3}}.\frac{\sqrt{3}.\sqrt{z-3}}{z}\)

\(A\ge\frac{1+x-1}{2x}+\frac{1}{\sqrt{2}}\left(\frac{2+y-2}{2y}\right)+\frac{1}{\sqrt{3}}\left(\frac{3+z-3}{2z}\right)=\frac{6+3\sqrt{2}+2\sqrt{3}}{12}\)

\(\Rightarrow A_{min}=\frac{6+3\sqrt{2}+2\sqrt{3}}{12}\) khi \(\left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{y-2}=\sqrt{2}\\\sqrt{z-3}=\sqrt{3}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=4\\z=6\end{matrix}\right.\)

Bình luận (2)
YY
13 tháng 5 2019 lúc 16:36

A=
x
1.
x−1



+
2


1

.
y
2

.
y−2



+
3


1

.
z
3

.
z−3





A\ge\frac{1+x-1}{2x}+\frac{1}{\sqrt{2}}\left(\frac{2+y-2}{2y}\right)+\frac{1}{\sqrt{3}}\left(\frac{3+z-3}{2z}\right)=\frac{6+3\sqrt{2}+2\sqrt{3}}{12}A≥
2x
1+x−1

+
2


1

(
2y
2+y−2

)+
3


1

(
2z
3+z−3

)=
12
6+3
2

+2
3





\Rightarrow A_{min}=\frac{6+3\sqrt{2}+2\sqrt{3}}{12}⇒A
min

=
12
6+3
2

+2
3



khi \left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{y-2}=\sqrt{2}\\\sqrt{z-3}=\sqrt{3}\end{matrix}\right.





x−1

=1
y−2

=
2


z−3

=
3



\Rightarrow\left\{{}\begin{matrix}x=2\\y=4\\z=6\end{matrix}\right.⇒





x=2
y=4
z=6



Bình luận (0)