Những câu hỏi liên quan
KL
Xem chi tiết
NT
15 tháng 4 2021 lúc 12:08

a, \(\sqrt{\frac{2a}{3}}.\sqrt{\frac{3a}{8}}=\sqrt{\frac{6a^2}{24}}=\sqrt{\frac{a^2}{4}}=\left|\frac{a}{2}\right|=\frac{a}{2}\)

do \(a\ge0\)

b, \(\sqrt{13a}.\sqrt{\frac{52}{a}}=\sqrt{\frac{676a}{a}}=\sqrt{676}=26\)

c, \(\sqrt{5a}.\sqrt{45a}-3a=\sqrt{225a^2}-3a=\left|15a\right|-3a\)

\(=15a-3a=12a\)do a > 0 

d, \(=\left(3-a\right)^2-\sqrt{0,2}.\sqrt{180a^2}\)

\(=\left(3-a\right)^2-\sqrt{36a^2}=\left(3-a\right)^2-\left|6a\right|\)

Với \(a\ge0\Rightarrow\left(3-a\right)^2-6a=a^2-6a+9-6a=a^2-12a+9\)

Với \(a< 0\Rightarrow\left(3-a\right)^2+6a=a^2-6a+9+6a=a^2+9\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
15 tháng 4 2021 lúc 5:09

a) Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

c) Do a ≥ 0 nên bài toán luôn xác định. Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

  

d) Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9 
Bình luận (0)
 Khách vãng lai đã xóa
VM
15 tháng 4 2021 lúc 8:39

b) \(\sqrt{13a}\).\(\sqrt{\frac{52}{a}}\)=\(\sqrt{13a.\frac{52}{a}}\)=\(\sqrt{13.13.2.2}\)=13.2=26

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
H24
Xem chi tiết
TC
21 tháng 8 2021 lúc 22:08

undefined

Bình luận (0)
NT
21 tháng 8 2021 lúc 22:12

a: \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)

b: \(\sqrt{\dfrac{2a}{3}}\cdot\sqrt{\dfrac{3a}{8}}=\sqrt{\dfrac{6a^2}{24}}=\sqrt{\dfrac{a^2}{4}}=\dfrac{a}{2}\)

c: \(\sqrt{5a\cdot45a}-3a=-15a-3a=-18a\)

Bình luận (0)
KT
Xem chi tiết
AH
6 tháng 7 2021 lúc 17:04

Lời giải:

a.

\(A=\left[\frac{(2+x)^2}{(2-x)(2+x)}+\frac{4x^2}{(2-x)(2+x)}-\frac{(2-x)^2}{(2-x)(2+x)}\right]:\frac{x(x-3)}{x^2(2-x)}\)

\(=\frac{(2+x)^2+4x^2-(2-x)^2}{(2-x)(2+x)}.\frac{x^2(2-x)}{x(x-3)}=\frac{4x(x+2)}{(2-x)(2+x)}.\frac{x^2(2-x)}{x(x-3)}=\frac{4x^2}{x-3}\)

b.

Khi $x=12$ thì $A=\frac{4.12^2}{12-3}=64$

c. 

$A=1\Leftrightarrow \frac{4x^2}{x-3}=1$

$\Leftrightarrow 4x^2=x-3$

$\Leftrightarrow 4x^2-x+3=0$

$\Leftrightarrow (2x-\frac{1}{4})^2=-\frac{47}{16}< 0$ (vô lý)

Vậy không tồn tại $x$

d. Để $A$ nguyên thì $\frac{4x^2}{x-3}$ nguyên

$\Leftrightarrow 4x^2\vdots x-3$

$\Leftrightarrow 4(x^2-9)+36\vdots x-3$

$\Leftrightarrow 36\vdots x-3$

$\Leftrightarrow x-3\in\left\{\pm 1;\pm 2;\pm 3;\pm 4;\pm 9; \pm 12; \pm 36\right\}$

Đến đây bạn có thể tự tìm $x$ được rồi, chú ý ĐKXĐ để loại ra những giá trị không thỏa mãn.

e.

$A>4\Leftrightarrow \frac{4x^2}{x-3}>4$

$\Leftrightarrow \frac{x^2}{x-3}>1$

$\Leftrightarrow \frac{x^2-x+3}{x-3}>0$

$\Leftrightarrow x-3>0$ (do $x^2-x+3>0$ với mọi $x$ thuộc ĐKXĐ)

$\Leftrightarrow x>3$. Kết hợp với đkxđ suy ra $x>3$

 

Bình luận (0)
TK
Xem chi tiết
DN
Xem chi tiết
NT
1 tháng 2 2022 lúc 19:57

\(=\left(\dfrac{2a+1}{2\left(a+2\right)}-\dfrac{a}{3\left(a-2\right)}-\dfrac{2a^2}{3\left(a-2\right)\left(a+2\right)}\right):\dfrac{13a+6}{24-12a}\)

\(=\dfrac{3\left(2a+1\right)\left(a-2\right)-2a\left(a+2\right)-4a^2}{6\left(a-2\right)\left(a+2\right)}:\dfrac{13a+6}{-12\left(a-2\right)}\)

\(=\dfrac{3\left(2a^2-3a-2\right)-2a\left(a+2\right)-4a^2}{6\left(a-2\right)\left(a+2\right)}\cdot\dfrac{-12\left(a-2\right)}{13a+6}\)

\(=\dfrac{6a^2-9a-6-2a^2-4a-4a^2}{a+2}\cdot\dfrac{-2}{13a+6}\)

\(=\dfrac{-\left(13a+6\right)}{a+2}\cdot\dfrac{-2}{13a+6}=\dfrac{2}{a+2}\)

Bình luận (0)
KT
Xem chi tiết
H24
9 tháng 6 2021 lúc 8:24

`Q=(a^3-3a^2+3a-1)/(a^2-1)`
`a)ĐK:a^2-1 ne 0<=>a ne +-1`
`Q=(a^3-3a^2+3a-1)/(a^2-1)`
`=(a-1)^3/((a-1)(a+1))`
`=(a-1)^2/(a+1)`
`b)|a|=5`
`<=>`  \(\left[ \begin{array}{l}a=5\\a=-5\end{array} \right.\) 
`<=>`  \(\left[ \begin{array}{l}Q=\dfrac{(5-1)^2}{5+1}=\dfrac83\\Q=\dfrac{(-5-1)^2}{-5+1}=-9\end{array} \right.\) 

Bình luận (0)
HT
9 tháng 6 2021 lúc 8:32

undefined

Bình luận (1)
NP
Xem chi tiết
TC
19 tháng 7 2021 lúc 13:27

\(1) \sqrt{9a^2.b^2}\)=3ab

\(2) \sqrt{3a}.\sqrt{27a}=\sqrt{3a}.3\sqrt{3a}=9a\)

\(3) \sqrt{3a^5}.12a=12\sqrt{3a^7}\)

\(4) \sqrt{5a}.\sqrt{45a}-3a=15a-3a=12a\)

\(5) \sqrt{3+\sqrt{a}}.\sqrt{3-\sqrt{a}}=\sqrt{(3+\sqrt{a}).(3-\sqrt{a})} =\sqrt{9-a} \)

\(6) \sqrt{3+\sqrt{5}}.\sqrt{3\sqrt{5}} =\sqrt{\sqrt{3\sqrt{5}}.(3+\sqrt{5})} =\sqrt{9+\sqrt{15}}\)

 

Bình luận (3)
NT
19 tháng 7 2021 lúc 13:21

1) \(\sqrt{9a^2b^2}=3ab\)

2) \(\sqrt{3a}\cdot\sqrt{27a}=9a\)

4) \(\sqrt{5a}\cdot\sqrt{45a}-3a=15a-3a=12a\)

Bình luận (1)
NT
Xem chi tiết
S7
25 tháng 3 2020 lúc 16:49

tìm ra đáp án chưa

Bình luận (0)
 Khách vãng lai đã xóa
S7
25 tháng 3 2020 lúc 16:56

Đc rồi chỉ mình với

Bình luận (0)
 Khách vãng lai đã xóa
NT
28 tháng 7 2022 lúc 21:35

Bài 3: 

a: \(\Leftrightarrow\left(x+5\right)\left(x-3\right)=\left(x+1\right)\left(x-1\right)-8\)

\(\Leftrightarrow x^2+2x-15=x^2-1-8=x^2-9\)

=>2x=6

hay x=3(loại)

b: \(\Leftrightarrow\dfrac{\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)}{\left(x^2-x+1\right)\left(x^2+x+1\right)}=\dfrac{3}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}\)

\(\Leftrightarrow x\left(x^3+1-x^3+1\right)=3\)

=>2x=3

hay x=3/2

Bình luận (0)