cho a,b,c>0 và a+b+c=2016
tìm GTNN của A=a^2+2b^2+3c^2
GIÚP VỚI NHAN,MÁY CHỦ GIÚP EM VỚI
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
CHO A+B+C=2016
TÌM GTNN CỦA S=A^2+2B^2+3C^2
GIÚP E VỚI MÁY CHỦ ƠI
Dùng bđt Bunhiacopxki
\(\left[a^2+\left(\sqrt{2}b\right)^2+\left(\sqrt{3}c\right)^2\right]\left[1+\left(\frac{1}{\sqrt{2}}\right)^2+\left(\frac{1}{\sqrt{3}}\right)^2\right]\ge\left(a+b+c\right)^2=2016^2\)
\(\Rightarrow S\ge\frac{2016^2}{\frac{11}{6}}=\frac{2016^2.6}{11}\)
Dấu bằng xảy ra khi \(\hept{\begin{cases}\frac{a}{1}=\frac{\sqrt{2}b}{\frac{1}{\sqrt{2}}}=\frac{\sqrt{3}c}{\frac{1}{\sqrt{3}}}\\a+b+c=2016\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2b=3c\\a+b+c=2016\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{12096}{11}\\b=\frac{6048}{11}\\c=\frac{4032}{11}\end{cases}}\)
Cho a,b,c thỏa (a+2b)(2b+3c)(3c+a)#0 và
\(\frac{a^2}{a+2b}+\frac{4b^2}{2a+3b}+\frac{9c^2}{3c+a}=\frac{a^2}{2b+3c}+\frac{4b^2}{3c+a}+\frac{9c^2}{a+2b}\)
chứng minh rằng \(\frac{a}{6}=\frac{b}{3}=\frac{c}{2}\).mấy a giải giúp em cái
a, Cho a,b,c > 0. cmr : P = 1/a+3b + 1/b+3c + 1/c+3a >= 1/a+2b+c + 1/b+2c+a + 1/c+2a+b
b, Cho a,b > 0 : a^2 + b^2 = 18 . Tìm GTNN của biểu thức : Q = 2a + 2b + a^2/b + b^2/a
Ai làm nhanh và đúng nhất mk tick cho nha
Cho mình hỏi, phân thức cuối cùng của câu a phải là \(\frac{1}{c+2a+b}\)chứ
cho a,b,c>0 thỏa mãn a+2b+3c>=20
tìm GTNN: a+b+c+3/a+9/(2b)+4/c
đặt
\(A=a+b+c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\)
\(=>4A=4a+4b+4c+\dfrac{12}{a}+\dfrac{36}{2b}+\dfrac{16}{c}\)
\(=>4A=a+2b+3c+3a+\dfrac{12}{a}+2b+\dfrac{36}{2b}+c+\dfrac{16}{c}\)
áp dụng BDT AM-GM
\(=>\dfrac{12}{a}+3a\ge2\sqrt{12.3}=12\)
\(=>2b+\dfrac{36}{2b}\ge2\sqrt{36}=12\)
\(=>c+\dfrac{16}{c}\ge2\sqrt{16}=8\)
\(=>4A\ge20+12+12+8=52=>A\ge13\)
dấu"=" xảy ra<=>a=2,b=3,c=4
Cho a,b,c>0. Tìm Min của
\(A=\dfrac{a^2-3bc}{b+c}+\dfrac{b^2-3ca}{c+a}+\dfrac{3c^2+1}{a+b}\)
Em đang cần gấp, mọi người giúp em với. Cảm ơn!
Cho 3 số a,b,c>0 .Tìm GTNN của P=\(\frac{a+3c}{a+2b+c}+\frac{4b}{a+b+2c}+\frac{8c}{a+b+3c}\)
\(Cho\)\(a;b;c>0\)và \(a+b+c=1.\)Tìm GTNN của \(P=\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\)
anh nên lên học 24h để được giả đáp tốt hơn !!
Cho a,b,c > 0. Tìm GTNN:
a, \(A=\dfrac{a^2}{2b+5c}+\dfrac{b^2}{2c+5a}+\dfrac{c^2}{2a+5b}\) với abc = 8
b, \(B=\dfrac{b+c}{a^2}+\dfrac{c+a}{b^2}+\dfrac{a+b}{c^2}\) với abc = 1
c, \(C=\dfrac{a+bc}{b+c}+\dfrac{b+ca}{c+a}+\dfrac{c+ab}{a+b}\) với a + b + c = 1
d, \(D=\dfrac{a^3}{2b+3c}+\dfrac{b^3}{2c+3a}+\dfrac{c^3}{2a+3b}\) với \(a^2+b^2+c^2\ge3\)
Cho a, b, c là 3 số thực dương thỏa mãn: a+2b+3c=3. Tìm GTNN của biểu thức: \(Q=\dfrac{a+1}{1+4b^2}+\dfrac{2b+1}{1+9c^2}+\dfrac{3c+1}{1+a^2}\)
Đặt \(\left(a;2b;3c\right)=\left(x;y;z\right)\Rightarrow x+y+z=3\)
\(Q=\dfrac{x+1}{1+y^2}+\dfrac{y+1}{1+z^2}+\dfrac{z+1}{1+x^2}\)
Ta có:
\(\dfrac{x+1}{1+y^2}=x+1-\dfrac{\left(x+1\right)y^2}{1+y^2}\ge x+1-\dfrac{\left(x+1\right)y^2}{2y}=x+1-\dfrac{\left(x+1\right)y}{2}\)
Tương tự:
\(\dfrac{y+1}{1+z^2}\ge y+1-\dfrac{\left(y+1\right)z}{2}\) ; \(\dfrac{z+1}{1+x^2}\ge z+1-\dfrac{\left(z+1\right)x}{2}\)
Cộng vế:
\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{2}\left(xy+yz+zx\right)\)
\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{6}\left(x+y+z\right)^2=\dfrac{3}{2}+3-\dfrac{9}{6}=3\)
\(Q_{min}=3\) khi \(x=y=z=1\) hay \(\left(a;b;c\right)=\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)\)