Những câu hỏi liên quan
NR
Xem chi tiết
H24
Xem chi tiết
DN
Xem chi tiết
MD
Xem chi tiết
ES
Xem chi tiết
NH
12 tháng 10 2015 lúc 18:20

khó + lười + nhiều = không làm

Bình luận (0)
LM
16 tháng 5 2019 lúc 11:21

Hello

Bình luận (0)
H24
7 tháng 1 2024 lúc 14:27

ko thích làm

 

Bình luận (0)
HM
Xem chi tiết
LL
27 tháng 8 2021 lúc 13:56

\(\dfrac{1}{2}\left(6x-2y\right)\left(3x+y\right)=\dfrac{1}{2}.2\left(3x-y\right)\left(3x+y\right)=9x^2-y^2\)

\(\left(\dfrac{2}{3}z-\dfrac{2}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}x\right).\dfrac{1}{2}=\left(\dfrac{1}{3}z-\dfrac{1}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}z\right).2.\dfrac{1}{2}=\dfrac{1}{9}z^2-\dfrac{1}{25}x^2\)

\(\left(5y-3x\right).\dfrac{1}{4}\left(12x+20y\right)=\left(5y-3x\right)\left(5y+3x\right).4.\dfrac{1}{4}=25y^2-9x^2\)

\(\left(\dfrac{3}{4}y-\dfrac{1}{2}x\right)\left(x+\dfrac{3}{2}y\right)=\left(\dfrac{3}{2}y-x\right)\left(\dfrac{3}{2}y+x\right)=\dfrac{9}{4}y^2-x^2\)

\(\left(a+b+c\right)\left(a+b+c\right)=\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

\(\left(x-y+z\right)\left(x+y-z\right)=x^2-\left(y-z\right)^2=x^2-y^2-z^2+2yz\)

Bình luận (1)
NT
27 tháng 8 2021 lúc 14:02

a: \(\dfrac{1}{2}\left(6x-2y\right)\left(3x+y\right)=\left(3x-y\right)\cdot\left(3x+y\right)=9x^2-y^2\)

b: \(\left(\dfrac{2}{3}z-\dfrac{2}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}x\right)\cdot\dfrac{1}{2}\)

\(=\left(\dfrac{1}{3}z-\dfrac{1}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}x\right)\)

\(=\dfrac{1}{9}z^2-\dfrac{1}{25}x^2\)

c: \(\left(5y-3x\right)\cdot\dfrac{1}{4}\cdot\left(12x+20y\right)\)

\(=\left(5y-3x\right)\left(5y+3x\right)\)

\(=25y^2-9x^2\)

d: \(\left(\dfrac{3}{4}y-\dfrac{1}{2}x\right)\left(\dfrac{3}{2}y+x\right)\cdot2\)

\(=\left(\dfrac{3}{2}y-x\right)\left(\dfrac{3}{2}y+x\right)\)

\(=\dfrac{9}{4}y^2-x^2\)

e: \(\left(a+b+c\right)\left(a+b-c\right)\)

\(=\left(a+b\right)^2-c^2\)

\(=a^2+2ab+b^2-c^2\)

Bình luận (0)
NA
Xem chi tiết
BB
Xem chi tiết
H24
26 tháng 11 2021 lúc 8:34

Đặt \(\left(x-1;y-2;z-3\right)=\left(a;b;c\right)=abc>0\)

Điều kiện bài toán trở thành :

\(a+1+b+2+c+3< 9\)

\(\sqrt{a+\sqrt{b}+\sqrt{c}}+\sqrt{c+5\left(a+1\right)+4\left(b+2\right)+3+\left(c+3\right)}\)

\(=\left(a+1\right)\left(b+2\right)=\left(b+2\right)\left(c+3\right)=\left(c+3\right)+\left(a+1\right)+11+a+b+c< 3\)

\(a+b+c< 3\)

\(=\sqrt{a+\sqrt{b}+\sqrt{c}+ab+bc+ca}\)

Mặt khác, do aa không âm, ta luôn có:

\(\text{(√a−1)2(a+2√a)≥0(a−1)2(a+2a)≥0}\)

\(\text{⇒a2−3a+2√a≥0⇒a2−3a+2a≥0}\)

\(\text{⇒2√a≥a(3−a)≥a(b+c)⇒2a≥a(3−a)≥a(b+c) (1)}\)

Hoàn toàn tương tự ta có:\(\text{ 2√b≥b(c+a)2b≥b(c+a) (2)}\)

\(\text{2√c≥c(a+b)2c≥c(a+b) (3)}\)

Cộng vế với vế (1);(2);(3):

\(\text{2(√a+√b+√c)≥2(ab+bc+ca)2(a+b+c)≥2(ab+bc+ca)}\)

\(\text{⇔√a+√b+√c≥ab+bc+ca⇔a+b+c≥ab+bc+ca}\)

Dấu "=" xảy ra khi và chỉ khi \(\text{a=b=c=0a=b=c=0 hoặc a=b=c=1a=b=c=1}\)

⇒x=...;y=...;z=...

Bình luận (0)
NH
Xem chi tiết