Những câu hỏi liên quan
TD
Xem chi tiết
CN
24 tháng 3 2022 lúc 11:59

lỗi rồi bạn nhé

Bình luận (0)
H24
Xem chi tiết
NL
9 tháng 9 2021 lúc 15:43

\(VT=\dfrac{a^2}{a+abc}+\dfrac{b^2}{b+abc}+\dfrac{c^2}{c+abc}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3abc}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+\dfrac{1}{9}\left(a+b+c\right)^3}=\dfrac{1^2}{1+\dfrac{1}{9}.1^3}=\dfrac{9}{10}\)

Bình luận (0)
VP
30 tháng 12 2021 lúc 11:06

=9/10

Bình luận (0)
 Khách vãng lai đã xóa
CV
Xem chi tiết
LB
15 tháng 7 2020 lúc 6:54

cá voi xanh không ? :))))

Bình luận (0)
 Khách vãng lai đã xóa
NC
Xem chi tiết
Xem chi tiết
H24
7 tháng 4 2020 lúc 13:46

Với a,b là các số thực dương thỏa mãn ab+a + b = 1 .Suy ra 1 + a2 =ab + a + b + a2 = ( a+b) ( a + 1 ) 

                                                                                                       1 + b2 = ab + a + b + b2 = (a + b) ( b + 1 ) 

Khi đó ta có : 

\(vt=\frac{a}{1+a^2}+\frac{b}{1+b^2}=\frac{a}{\left(a+b\right)\left(a+1\right)}+\frac{b}{\left(a+b\right)\left(b+1\right)}=\frac{2ab+a+b}{\left(a+b\right)\left(a+1\right)\left(b+1\right)}\)

     \(\frac{1+ab}{\left(a+b\right)\left(ab+a+b+1\right)}=\frac{1+ab}{2\left(a+b\right)}\)

\(vp=\frac{1+ab}{\sqrt{2\left(1+a^2\right)\left(1+b^2\right)}}=\frac{1+ab}{\sqrt{2\left(a+b\right)\left(a+1\right)\left(a+b\right)\left(b+1\right)}}\)

\(=\frac{1+ab}{\left(a+b\right)\sqrt{2\left(ab+a+b+1\right)}}=\frac{1+ab}{\left(a+b\right)\sqrt{2\left(1+1\right)}}=\frac{1+ab}{2\left(a+b\right)}\)

=> Đẳng thức được chứng minh 

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
TD
Xem chi tiết
VQ
Xem chi tiết
NH
Xem chi tiết