Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

TD

Cho a,b,c là các sô thực dương thỏa mãn a+b+c=1
CMR 

NL
23 tháng 3 2022 lúc 0:55

Với a;b;c dương:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)-\sqrt[3]{abc}.\sqrt[3]{ab.bc.ca}\)

\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\dfrac{1}{3}\left(a+b+c\right).\dfrac{1}{3}\left(ab+bc+ca\right)\)

\(=\dfrac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)

Đặt vế trái BĐT là P, ta có:

\(\dfrac{ab}{1-c^2}=\dfrac{ab}{\left(1-c\right)\left(1+c\right)}=\dfrac{ab}{\left(a+b\right)\left(a+c+b+c\right)}=\dfrac{ab}{\sqrt{a+b}.\sqrt{a+b}\left(a+c+b+c\right)}\)

\(\le\dfrac{ab}{\sqrt[]{2\sqrt[]{ab}}.\sqrt[]{a+b}.2\sqrt[]{\left(a+c\right)\left(b+c\right)}}=\dfrac{\sqrt[4]{\left(ab\right)^3}}{2\sqrt[]{2}.\sqrt[]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

Tương tự:

\(\dfrac{bc}{1-a^2}\le\dfrac{\sqrt[4]{\left(bc\right)^3}}{2\sqrt[]{2}.\sqrt[]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

\(\dfrac{ca}{1-b^2}\le\dfrac{\sqrt[4]{\left(ca\right)^3}}{2\sqrt[]{2}.\sqrt[]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

Cộng vế:

\(P\le\dfrac{\sqrt[4]{\left(ab\right)^3}+\sqrt[4]{\left(bc\right)^3}+\sqrt[4]{\left(ca\right)^3}}{2\sqrt[]{2}.\sqrt[]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

Nên ta chỉ cần chứng minh:

\(\sqrt[4]{\left(ab\right)^3}+\sqrt[4]{\left(bc\right)^3}+\sqrt[4]{\left(ca\right)^3}\le\dfrac{3}{2\sqrt[]{2}}\sqrt[]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(\Leftrightarrow\left(\sqrt[4]{\left(ab\right)^3}+\sqrt[4]{\left(bc\right)^3}+\sqrt[4]{\left(ca\right)^3}\right)^2\le\dfrac{9}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Mà \(\dfrac{9}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)\)

Nên ta chỉ cần chứng minh:

\(\left(\sqrt[4]{\left(ab\right)^3}+\sqrt[4]{\left(bc\right)^3}+\sqrt[4]{\left(ca\right)^3}\right)^2\le\left(a+b+c\right)\left(ab+bc+ca\right)\)

Thật vậy:

\(\left(\sqrt[4]{ab}.\sqrt[]{ab}+\sqrt[4]{bc}.\sqrt[]{bc}+\sqrt[4]{ca}.\sqrt[]{ca}\right)^2\le\left(\sqrt[]{ab}+\sqrt[]{bc}+\sqrt[]{ca}\right)\left(ab+bc+ca\right)\)

\(\le\left(a+b+c\right)\left(ab+bc+ca\right)\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)

Các câu hỏi tương tự
NC
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết
KR
Xem chi tiết
H24
Xem chi tiết
TV
Xem chi tiết
H24
Xem chi tiết
TV
Xem chi tiết