(0.25-30%x)1/3-1/4=-31/6
tìm x
(0.25-30%x)×1/3-1/4=-5/1/6
(0.25-0.3x)x1/3-1/4=-5/16
(0.25-0.3x)x1/3=-1/16 (làm tắt)
0.25-0.3x=-1/16:1/3
0.25-0.3x=-3/16
0.3x=0.4375 =>x=35/24
(x-1)x+2=(x-1)x+4
1/ 4 . 2/6 . 3/8 . 4/10 . 5/15 .... 30/62 . 31/64= 2x
a) Ta có: \(\left(x-1\right)^{x+2}-\left(x-1\right)^{x+4}=0\)
\(\Leftrightarrow\left(x-1\right)^x\cdot\left(x-1\right)^2-\left(x-1\right)^x\cdot\left(x-1\right)^4=0\)
\(\Leftrightarrow\left(x-1\right)^{x+2}\cdot\left[1-\left(x-1\right)^2\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-1=1\\x-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)
b) Ta có: \(\dfrac{1}{4}\cdot\dfrac{2}{6}\cdot\dfrac{3}{8}\cdot\dfrac{4}{10}\cdot\dfrac{5}{15}\cdot...\cdot\dfrac{30}{62}\cdot\dfrac{31}{64}=2x\)
\(\Leftrightarrow2x=\dfrac{1}{64}\)
hay \(x=\dfrac{1}{128}\)
Tìm x:
1/4 . 2/6 . 3/8 . ... . 30/62 . 31/64 = 4x
Ta có: (1/4)*(2/6)*(3/8)*(4/10)*(5/12)*...*(30/62)*(31/64)=2^x. Tìm x
Ta có: \(2^x=\dfrac{1}{4}\cdot\dfrac{2}{6}\cdot\dfrac{3}{8}\cdot\dfrac{4}{10}\cdot\dfrac{5}{12}\cdot...\cdot\dfrac{30}{62}\cdot\dfrac{31}{64}\)
\(\Leftrightarrow2^x=\dfrac{1\cdot2\cdot3\cdot4\cdot...\cdot31}{2\cdot\left(2\cdot3\cdot4\cdot...\cdot31\right)\cdot64}\)
\(\Leftrightarrow2^x=\dfrac{1}{2}\cdot\dfrac{1}{64}=\dfrac{1}{128}\)
\(\Leftrightarrow2^x=\dfrac{1}{2^6}\)
\(\Leftrightarrow2^{x+6}=1\)
\(\Leftrightarrow x+6=0\)
hay x=-6
Vậy: x=-6
`1/4 . 2/6 . 3/8 ... . 30/62 .31/64 =2^x`
`-> (1.2.3....30.31)/(4.6.8....62.64)=2^x`
`-> (1.(2.3...31))/(2.(2.3.4...31).32)=2^x`
`-> 1/(2.32)=2^x`
`-> 1/64=2^x`
`-> 1/(2^6)=2^x`
`-> x=-6`.
3/2 . x + 3/7 = -4/5
-11/12 . x + 0.25 =5/6
(x - 2)2 =1
(2x - 1)3 = -8
\(\dfrac{3}{2}x+\dfrac{3}{7}=-\dfrac{4}{5}\)
\(\Leftrightarrow\dfrac{3}{2}x=-\dfrac{43}{35}\)
\(\Leftrightarrow x=-\dfrac{86}{105}\)
Vậy \(x=-\dfrac{86}{105}\)
\(-\dfrac{11}{12}x+0,25=\dfrac{5}{6}\)
\(\Leftrightarrow-\dfrac{11}{12}x+\dfrac{1}{4}=\dfrac{5}{6}\)
\(\Leftrightarrow-\dfrac{11}{12}x=\dfrac{7}{12}\)
\(\Leftrightarrow x=-\dfrac{7}{11}\)
Vậy \(x=-\dfrac{7}{11}\)
\(\left(x-2\right)^2=1\)
\(\Leftrightarrow\left(x-2\right)^2-1=0\)
\(\Leftrightarrow\left(x-2-1\right)\left(x-2+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Vậy x = {3; 1}\(\left(2x-1\right)^3=-8\)
\(\Leftrightarrow2x-1=-2\)
\(\Leftrightarrow2x=-1\)
\(\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy \(x=-\dfrac{1}{2}\)
(x - 2)2 = 1
<=>\(\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.< =>\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Vậy x = 3; 1
(2x - 1)3 = -8
<=> 2x - 1 = -2
<=> 2x = -1
<=> x = \(\dfrac{-1}{2}\)
Vậy x = \(\dfrac{-1}{2}\)
\(|\) 2,5 - x\(|\) = 1,3
1,6- \(|\)x - 0,2 \(|\)= 0
13x = 169
\(\dfrac{-2}{x}\)=\(\dfrac{-x}{8\dfrac{ }{25}}\)
\(\dfrac{x}{-15}\)=\(\dfrac{-60}{x}\)
\(|\)x\(|\)+0,573=2
Tim x:
a) 2x-3=1/2
b) /x+1/=0.25
c) 32/2x=2
d) 64/125=(4/5)^x
e) x/6=-9/18
f) -4/x+3=12/-15
g) x+1/2/0.75=3/2/0.25
TÌM X:
a) 2x - 3 = \(\frac{1}{2}\)
2x = \(\frac{1}{2}+3\)
2x = \(\frac{7}{2}\)
x = 2 : \(\frac{7}{2}\)
x = 2 . \(\frac{2}{7}\)
x = \(\frac{4}{7}\)
b) /x+1/ = 0.25
/x+1/ = \(\frac{1}{4}\)
\(\orbr{\begin{cases}x+1=\frac{1}{4}\\x+1=-\frac{1}{4}\end{cases}}\)
\(\orbr{\begin{cases}x=\frac{1}{4}-1\\x=-\frac{1}{4}-1\end{cases}}\)
\(\orbr{\begin{cases}x=-\frac{3}{4}\\x=-\frac{5}{4}\end{cases}}\)
c) 32 : 2x = 2
\(2x=32:2\)
\(2x=16\)
\(x=16:2\)
\(x=8\)
~GOOD STUDY~
a) 2x-3=1/2
=> 2x=1/2+3
=> 2x=7/2
=> x=7/2:2
=> x=7/4
b) |x+1|=0.25
=> \(\orbr{\begin{cases}x+1=0,25\\x+1=-0,25\end{cases}}\)=>\(\orbr{\begin{cases}x=0,25-1\\x=-0,25-1\end{cases}}\)=>\(\orbr{\begin{cases}x=-0,75\\x=-1,25\end{cases}}\)
1. Giải các phương trình
b) 3+ (x-5)=2(3x-2) c) 2(x-0.5)+3=0.25(4x-1)
d) 2(x-\(\dfrac{1}{4}\))-4=-6(-\(\dfrac{1}{3}\)x+0.5)+2
b) Ta có: \(3+\left(x-5\right)=2\left(3x-2\right)\)
\(\Leftrightarrow3+x-5=6x-4\)
\(\Leftrightarrow x-2-6x+4=0\)
\(\Leftrightarrow-5x+2=0\)
\(\Leftrightarrow-5x=-2\)
\(\Leftrightarrow x=\dfrac{2}{5}\)
Vậy: \(S=\left\{\dfrac{2}{5}\right\}\)
c) Ta có: \(2\left(x-0.5\right)+3=0.25\left(4x-1\right)\)
\(\Leftrightarrow2x-1+3=x-\dfrac{1}{4}\)
\(\Leftrightarrow2x+2-x+\dfrac{1}{4}=0\)
\(\Leftrightarrow x+\dfrac{9}{4}=0\)
\(\Leftrightarrow x=-\dfrac{9}{4}\)
Vậy: \(S=\left\{-\dfrac{9}{4}\right\}\)
d) Ta có: \(2\left(x-\dfrac{1}{4}\right)-4=-6\left(-\dfrac{1}{3}x+0.5\right)+2\)
\(\Leftrightarrow2x-\dfrac{1}{2}-4=2x-3+2\)
\(\Leftrightarrow2x-\dfrac{9}{2}=2x-1\)
\(\Leftrightarrow2x-2x=-1+\dfrac{9}{2}\)
\(\Leftrightarrow0x=\dfrac{7}{2}\)(vô lý)
Vậy: \(S=\varnothing\)
b.
→ -2 + x = 6x - 4
→ -2 + 4 = 6x - x
→ 2 = 5x
→ x = \(\dfrac{2}{5}\)
Vậy, phương trình có tập nghiệm S = {\(\dfrac{2}{5}\)}
Tìm x :
\(\dfrac{1}{4}\) . \(\dfrac{2}{6}\) . \(\dfrac{3}{8}\) . \(\dfrac{4}{10}\) . .... . \(\dfrac{30}{62}\) . \(\dfrac{31}{64}\)
`1/4. 2/6. 3/8. 4/10........ 30/62. 31/64=2^x`
`=>\underbrace{1/2. 1/2. 1/2. 1/2..............1/2}_{\text{30 số 2}}. 1/64=2^x`
`=>(1/2)^{30}.(1/2)^{6}=2^x`
`=>(1/2)^{36}=2^x`
`=>2^{-36}=2^x`
`=>x=-36`
Vậy `x=-36`
tìm x biết :
(1/4).(2/6).(3/8).(4/10).(5/12)....(30/62).(31/64) = 2^x
Có: \(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}...\frac{30}{62}.\frac{31}{64}=\frac{1}{2.2}.\frac{2}{2.3}.\frac{3}{2.4}...\frac{30}{2.31}.\frac{31}{2.32}=\frac{1}{2}.\frac{1}{2}.\frac{1}{2}...\frac{1}{2}.\frac{1}{2}.\frac{1}{32}\)
\(=\frac{1}{2^{31}.2^5}=\frac{1}{2^{36}}=2^x\)\(\Rightarrow1=2^x.2^{36}=2^{36+x}\)\(\Rightarrow2^{36+x}=2^0\Rightarrow36+x=0\Rightarrow x=-36\)