cho tam giác abc cân tại a. ab=ac=5cm, bc=8cm. kẻ ah vuông góc với bc
a) cm hb=hc
b) tinh ah
Cho tam giác ABC cân tại A; kẻ AH vuông góc BC
a) CMR: HB=HC
b) Cho AB=10; BC=6. Tính AH
c) Kẻ HE vuông góc với AB; HF vuông góc với AC. CMR tam giác AEF cân
d) CM: BM mũ 2+AF mũ 2=AHmũ 2+BEmũ 2
MNG GIÚP E VS NHÉ Ạ! E CẢM ƠN NHÌU Ạ!
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trug điểm của BC
hay HB=HC
b: BC=6cm
nên BH=3cm
=>\(AH=\sqrt{10^2-3^2}=\sqrt{91}\left(cm\right)\)
c: Xét ΔAEH vuông tại E và ΔAFH vuông tại F có
AH chung
\(\widehat{EAH}=\widehat{FAH}\)
Do đó: ΔAEH=ΔAFH
Suy ra: AE=AF
hay ΔAEF cân tại A
Cho tam giác ABC cân tại A, tia phân giác của góc A cắt cạnh BC ở H.Chứng minh:a) HB = HCb) AH vuông góc với BCc) Hãy tính AH khi BC = 8cm, AB = 5cm
a/ Trong tam giác ABC cân tại A có: AH là tia phân giác (1)
=> AH cũng là đường trung tuyến
=> H là trung điểm BC => HB=HC
b/ Từ (1) => AH cũng là đường cao
=> AH \(\perp\) BC
c/ Ta có: H là trung điểm BC
=> HB=HC=\(\dfrac{1}{2}\) BC
mà BC=8(cm)
=> HB=BC=8:2=4(cm)
Dựa vào định lý Pytago
=> BH2+AH2=AB2
=> AH2=AB2-BH2
AH2= 52-42
AH2=25-16=9
=> AH=\(\sqrt{9}\) =3(cm)
a) Xét ΔABH và ΔACH có
AB=AC(ΔABC cân tại A)
\(\widehat{BAH}=\widehat{CAH}\)(AH là tia phân giác của \(\widehat{BAC}\))
AH chung
Do đó: ΔABH=ΔACH(c-g-c)
Suy ra: HB=HC(Hai cạnh tương ứng)
Cho tam giác ABC cân tại A. Kẻ AH vuông góc BC (H thuộc BC).
a/ Chứng minh Tam giác AHB = Tam giác AHC. Từ đó suy ra HB = HC
b/ Biết AH = 8 cm, BC = 12 cm. Tính độ dài AC.
c/ Kẻ HD vuông góc với AB (D thuộc AB), kẻ HE vuông góc với AC (E thuộc AC). Chứng minh Tam giác HDE cân.
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
=>HB=HC
b: BH=CH=12/2=6cm
=>AC=căn AH^2+HC^2=10cm
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
=>ΔADH=ΔAEH
=>HD=HE
=>ΔHDE cân tại H
Cho tam giác ABC cân tại A. Kẻ AH vuông góc BC (H thuộc BC).
a/ Chứng minh Tam giác AHB = Tam giác AHC. Từ đó suy ra HB = HC
b/ Biết AH = 8 cm, BC = 12 cm. Tính độ dài AC.
c/ Kẻ HD vuông góc với AB (D thuộc AB), kẻ HE vuông góc với AC (E thuộc AC). Chứng minh Tam giác HDE cân.
Chứng minh
a) Xét tam giác AHB và tam giác AHC có:
b) có tam giác ABC cân tại A
=> AB=AC
có BC=BH+HC
=> BC=12:2=6(cm)
=> BH=6;HC=6
có tam giác AHC
=> áp dụng định lí pytago có
=>AH2+HC2=AC2
=>82+62=AC2
=>AC2=102
=>AC=10
Cho tam giác ABC cân có AB=AC=5cm Kẻ AH vuông góc với BC ( H thuộc BC).a, Chứng minh HB=HC
b, tính BH bt AH=4cm
c,c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC). tam giác ADE là tam giác j ? vì sao
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
⇔BH=CH(hai cạnh tương ứng)
b) Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(BH^2+AH^2=AB^2\)
\(\Leftrightarrow BH^2=AB^2-AH^2=5^2-4^2=9\)
hay BH=3(cm)
Vậy: BH=3cm
c) Ta có: ΔABH=ΔACH(cmt)
nên \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)
hay \(\widehat{DAH}=\widehat{EAH}\)
Xét ΔDAH vuông tại D và ΔEAH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)(cmt)
Do đó: ΔDAH=ΔEAH(cạnh huyền-góc nhọn)
Suy ra: AD=AE(hai cạnh tương ứng)
Xét ΔADE có AD=AE(cmt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
Cho tam giác ABC cân tại A. Kẻ Ah vuông góc với BC( H thuộc BC)
a) CM: HB=HC
b) CM: Ah là tia phân giacscuar góc BAC
c) Qua B vẽ đường thẳng vuông góc với AB, qua C vẽ đường thẳng vuông góc với AC, hai đường thẳng này cắt nhau ở D. Cm tam giác DBC cân.
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(Hai cạnh tương ứng)
Cho tam giác abc cân có ab=ac=5cm, bc=8cm. Kẻ ah vuông góc với bc (h thuộc bc).
a, CM hb=hc
b, Tính độ đà ah
c, Kẻ hd vuông góc với ab (d thuộc ab) kẻ he vuông góc với ac (e thuộc ac). cm tam giác hde cân
d, so sánh hd và hc
cho tam giác abc cân tại a có AB=AC=5cm, BC=8cm. kẻ AH vuông góc với BC (H thuộc BC) a) chứng minh HB=HC và góc BAH= góc CAH. b) tính độ dài AH. c) kẻ HD vươong góc với AB (D thuộc AB), kẻ HE vuông góc với AC (E thuộc AC). Chứng minh tam giác HDE là tam giác cân
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
hay HB=HC
Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác
hay \(\widehat{BAH}=\widehat{CAH}\)
b: BH=CH=BC/2=4(cm)
nên AH=3(cm)
c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có
AH chung
\(\widehat{EAH}=\widehat{DAH}\)
DO đó: ΔAEH=ΔADH
Suy ra: HE=HD
hay ΔHDE cân tại H
Cho tam giác ABC có AB= AC=5cm;BC=8cm. Kẻ AH vuông góc với BC.
a) Chứng minh rằng : HB=HC và BAH = CAH
b) Tính AH
c) Kẻ Kẻ HD vuông góc với AB tại D , Kẻ HE vuông góc với AC tại E. Chứng minh răng : Tam giác HDE là tam giác cân