Bài 6: Tính chất ba đường phân giác của tam giác

AB

Cho tam giác ABC cân có AB=AC=5cm Kẻ AH vuông góc với BC ( H thuộc BC).a, Chứng minh HB=HC

b, tính BH bt AH=4cm

c,c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC). tam giác ADE là tam giác j ? vì sao

NT
9 tháng 2 2021 lúc 17:47

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

⇔BH=CH(hai cạnh tương ứng)

b) Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(BH^2+AH^2=AB^2\)

\(\Leftrightarrow BH^2=AB^2-AH^2=5^2-4^2=9\)

hay BH=3(cm)

Vậy: BH=3cm

c) Ta có: ΔABH=ΔACH(cmt)

nên \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)

hay \(\widehat{DAH}=\widehat{EAH}\)

Xét ΔDAH vuông tại D và ΔEAH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)(cmt)

Do đó: ΔDAH=ΔEAH(cạnh huyền-góc nhọn)

Suy ra: AD=AE(hai cạnh tương ứng)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

Bình luận (0)

Các câu hỏi tương tự
QD
Xem chi tiết
TM
Xem chi tiết
NV
Xem chi tiết
TL
Xem chi tiết
NA
Xem chi tiết
SK
Xem chi tiết
HB
Xem chi tiết
KQ
Xem chi tiết
SK
Xem chi tiết