Cho P = \(\sqrt{,14+\sqrt{40}+\sqrt{56}+\sqrt{140}}\)
Rút gọn : \(P=\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}\)
Lời giải:
\(P=\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}=\sqrt{14+2\sqrt{10}+2\sqrt{14}+2\sqrt{35}}\)
\(=\sqrt{(7+2\sqrt{7.5}+5)+2(\sqrt{10}+\sqrt{14})+2}\)
\(=\sqrt{(\sqrt{7}+\sqrt{5})^2+2\sqrt{2}(\sqrt{5}+\sqrt{7})+(\sqrt{2})^2}\)
\(=\sqrt{(\sqrt{5}+\sqrt{7}+\sqrt{2})^2}=\sqrt{5}+\sqrt{7}+\sqrt{2}\)
Cho \(P=\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}\) . Hãy biểu diễn P dưới dạng tổng của 3 căn thức bậc 2
\(P=\sqrt{\left(\sqrt{2}+\sqrt{5}+\sqrt{7}\right)^2}=\left|\sqrt{2}+\sqrt{5}+\sqrt{7}\right|=\sqrt{2}+\sqrt{5}+\sqrt{7}\)
Cho \(P=\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}\)
Được biểu diễn dưới dạng: \(P=\sqrt{a}+\sqrt{b}+\sqrt{c}\)
Tính a+b+c
Ta có
\(P=\sqrt{14+2\sqrt{10}+2\sqrt{14}+2\sqrt{35}}\)
\(\Leftrightarrow P=\sqrt{\left(\sqrt{5}+\sqrt{2}+\sqrt{7}\right)^2}\)
\(\Leftrightarrow P=\sqrt{5}+\sqrt{2}+\sqrt{7}\)
Mà \(P=\sqrt{a}+\sqrt{b}+\sqrt{c}=\sqrt{5}+\sqrt{2}+\sqrt{7}\)
Suy ra \(a+b+c=5+2+7=14\)
tính :
A=\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
B=\(\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}\)
\(A=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{6}+\sqrt{8}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=1+\sqrt{2}\)
B=\(\sqrt{14+2\sqrt{10}+2\sqrt{14}+2\sqrt{35}}\)
B=\(\sqrt{7+5+2+2\sqrt{2.5}+2\sqrt{2.7}+2\sqrt{7.5}}\)
B=\(\left(\sqrt{\sqrt{7}+\sqrt{5}+\sqrt{2}}\right)^2\)
B=\(\sqrt{7}+\sqrt{5}+\sqrt{2}\)
P=\(\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}\)duoc bieu dien duoi dang tong cua 3 can thuc bac hai nhu sau P=\(\sqrt{a}+\sqrt{b}+\sqrt{c}\)
khi do a+b+c=?
P=\(\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}\)=\(\sqrt{2+5+7+2\sqrt{5.2}+2\sqrt{2.7}+2\sqrt{3.5}}\)
=\(\sqrt{\left(\sqrt{2}+\sqrt{5}+\sqrt{7}\right)^2}\)=\(\sqrt{2}+\sqrt{5}+\sqrt{7}\)=\(\sqrt{a}+\sqrt{b}+\sqrt{c}\)
Vậy a+b+c=14
\(\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}\) được biểu diễn dưới dạng tổng 3 căn thức bậc 2 như sau: P=\(\sqrt{a}+\sqrt{b}+\sqrt{c}\). khi đó a+b+c=.......
\(\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}\)
\(=\sqrt{2+5+7+2\sqrt{2.5}+2\sqrt{2.7}+2\sqrt{5.7}}\)
\(=\sqrt{\left(\sqrt{2}+\sqrt{5}+\sqrt{7}\right)^2}=\sqrt{2}+\sqrt{5}+\sqrt{7}\)
\(\Rightarrow a+b+c=2+5+7=14\)
Rút gọn
B=\(\sqrt{\text{ 14+ √ 40 + √ 56 + √ 140}}\)
1) Tính giá trị biểu thức A = \(\frac{\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}}{\sqrt{2}+\sqrt{5}+\sqrt{7}}\)
2) Cho B = \(\frac{2\sqrt{a}\left(\sqrt{a}+\sqrt{2a}-\sqrt{3b}\right)+\sqrt{3b}\left(2\sqrt{a}-\sqrt{3b}\right)-2a\sqrt{2}}{a\sqrt{2}+\sqrt{3ab}}\)
a. Tìm ĐKXĐ của B và rút gọn B
b. Tính giá trị biểu thức B khi a = \(1+3\sqrt{2}\) và b = \(10+\frac{11\sqrt{8}}{3}\)
Bài 1:
$14+\sqrt{40}+\sqrt{56}+\sqrt{140}=14+\sqrt{56}+(\sqrt{40}+\sqrt{140})$
=14+2\sqrt{10}+2\sqrt{14}+2\sqrt{35}=(12+2\sqrt{35})+2+(2\sqrt{10}+2\sqrt{14})$
$=(\sqrt{5}+\sqrt{7})^2+2+2\sqrt{2}(\sqrt{5}+\sqrt{7})$
$=(\sqrt{5}+\sqrt{7}+\sqrt{2})^2$
$\Rightarrow \sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}=\sqrt{2}+\sqrt{5}+\sqrt{7}$
\(\Rightarrow A=\frac{\sqrt{2}+\sqrt{5}+\sqrt{7}}{\sqrt{2}+\sqrt{5}+\sqrt{7}}=1\)
Lời giải:
a) ĐKXĐ: $a,b\geq 0$ và $a,b$ không đồng thời cùng bằng $0$
\(B=\frac{2a+2\sqrt{2}a-2\sqrt{3ab}+2\sqrt{3ab}-3b-2a\sqrt{2}}{a\sqrt{2}+\sqrt{3ab}}=\frac{2a-3b}{\sqrt{a}(\sqrt{2a}+\sqrt{3b})}=\frac{(\sqrt{2a}-\sqrt{3b})(\sqrt{2a}+\sqrt{3b})}{\sqrt{a}(\sqrt{2a}+\sqrt{3b})}\)
\(=\frac{\sqrt{2a}-\sqrt{3b}}{\sqrt{a}}=\sqrt{2}-\sqrt{\frac{3b}{a}}\)
b)
\(a=1+3\sqrt{2}; 3b=30+11\sqrt{8}\Rightarrow \frac{3b}{a}=\frac{30+11\sqrt{8}}{1+3\sqrt{2}}=\frac{(30+11\sqrt{8})(1-3\sqrt{2})}{(1+3\sqrt{2})(1-3\sqrt{2})}\)
\(=\frac{102+68\sqrt{2}}{17}=6+4\sqrt{2}=(2+\sqrt{2})^2\)
\(\Rightarrow \sqrt{\frac{3b}{a}}=2+\sqrt{2}\)
\(\Rightarrow B=\sqrt{2}-(2+\sqrt{2})=-2\)
Tính
a.\(\sqrt{8+2\sqrt{5}}\) b.\(\sqrt{10-2\sqrt[]{5}}\) c.\(\sqrt{5+\sqrt{24}}\) d.\(\sqrt{12-\sqrt{140}}\)
e.\(\sqrt{14+2\sqrt{5}}\) f. \(\sqrt{8-\sqrt{28}}\) g.\(\sqrt{23-4\sqrt{15}}\) h.\(\sqrt{9+4\sqrt{2}}\)
giúp mik vs mai mik nộp rồi,cảm ơn mn nhiều
c) \(\sqrt{5+\sqrt{24}}=\sqrt{5+2\sqrt{6}}=\sqrt{3}+\sqrt{2}\)
d) \(\sqrt{12-\sqrt{140}}=\sqrt{12-2\sqrt{35}}=\sqrt{7}-\sqrt{5}\)
f) \(\sqrt{8-\sqrt{28}}=\sqrt{8-2\sqrt{7}}=\sqrt{7}-1\)
g) \(\sqrt{23-4\sqrt{15}}=\sqrt{23-2\cdot\sqrt{60}}=2\sqrt{5}-\sqrt{3}\)
h) \(\sqrt{9+4\sqrt{2}}=\sqrt{\left(2\sqrt{2}+1\right)^2}=2\sqrt{2}+1\)