Những câu hỏi liên quan
PQ
Xem chi tiết
NP
2 tháng 12 2016 lúc 21:33

giải xog thì chớt

Bình luận (0)
H24
Xem chi tiết
NL
3 tháng 11 2019 lúc 21:19

ĐKXĐ: \(\left\{{}\begin{matrix}4-x^2\ge0\\x^4-16\ge0\\4x+1\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2\le4\\x^2\ge4\\4x+1\ge0\end{matrix}\right.\) \(\Rightarrow x=2\)

Thay \(x=2\) vào pt ta được:

\(3+\sqrt{y^2-2y+1}=5-y\)

\(\Leftrightarrow\left|y-1\right|=2-y\) (\(y\le2\))

\(\Rightarrow\left[{}\begin{matrix}y-1=2-y\\y-1=y-2\left(vn\right)\end{matrix}\right.\) \(\Rightarrow y=\frac{3}{2}\)

Vậy nghiệm của pt là \(\left(x;y\right)=\left(2;\frac{3}{2}\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
HQ
Xem chi tiết
CM
Xem chi tiết
PA
Xem chi tiết
CV
Xem chi tiết
H24
Xem chi tiết
AH
28 tháng 2 2017 lúc 18:26

Bài 1)

Ta biết ĐKXĐ:

\(\left\{\begin{matrix}4-x^2\ge0\\x^4-16\ge0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}4-x^2\ge0\\\left(x^2-4\right)\left(x^2+4\right)\ge0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}4-x^2\ge0\\x^2-4\ge0\end{matrix}\right.\Rightarrow x^2-4=0\rightarrow x=\pm2\)

Mặt khác \(4x+1\geq 0\Rightarrow x=2\)

Thay vào PT ban đầu : \(\Rightarrow 3+|y-1|=-y+5\Leftrightarrow |y-1|=2-y\)

Xét TH \(y-1\geq 0\)\(y-1<0\) ta thu được \(y=\frac{3}{2}\)

Thu được cặp nghiệm \((x,y)=\left (2,\frac{3}{2}\right)\)

Bình luận (0)
AH
28 tháng 2 2017 lúc 18:39

Bài 2)

BĐT cần chứng minh tương đương với:

\(\sqrt{\frac{z(x-z)}{xy}}+\sqrt{\frac{z(y-z)}{xy}}\leq 1\Leftrightarrow A=\left(\sqrt{\frac{z(x-z)}{xy}}+\sqrt{\frac{z(y-z)}{xy}}\right)^2\leq 1\)

Áp dụng BĐT Cauchy - Schwarz kết hợp AM-GM:

\(A\leq \left ( \frac{z}{y}+\frac{z}{x} \right )\left ( \frac{x-z}{x}+\frac{y-z}{y} \right )=\left ( \frac{z}{x}+\frac{z}{y} \right )\left ( 2-\frac{z}{x}-\frac{z}{y} \right )\)

\(\leq \left ( \frac{\frac{z}{x}+\frac{z}{y}+2-\frac{z}{x}-\frac{z}{y}}{2} \right )^2=1\)

Do đó ta có đpcm.

Bình luận (0)
EC
Xem chi tiết
NL
13 tháng 11 2018 lúc 0:13

1/a) ĐKXĐ:

\(\left\{{}\begin{matrix}4-x^2\ge0\\x^4-16\ge0\\4x+1\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4-x^2\ge0\\\left(x^2-4\right)\left(x^2+4\right)\ge0\\x\ge\dfrac{-1}{4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^2-4\le0\\x^2-4\ge0\\x\ge\dfrac{-1}{4}\end{matrix}\right.\) \(\Rightarrow x=2\)

Thế vào pt ta được:

\(3+\sqrt{y^2-2y+1}=5-y\Leftrightarrow\left|y-1\right|=2-y\Rightarrow y=\dfrac{3}{2}\)

Vậy pt có cặp nghiệm duy nhất \(x=2;y=\dfrac{3}{2}\)

2/ Muốn giải chi tiết thì buộc phải sử dụng kiến thức lớp 11 (các công thức lượng giác nhân đôi, nhân ba), còn lớp 9 thì chỉ có cách thừa nhận các giá trị lượng giác của góc 108 hoặc 54 độ là 1 số vô tỉ.

Gọi H là trung điểm BC \(\Rightarrow BH=\dfrac{BC}{2}\)

\(\widehat{CAH}=\dfrac{\widehat{A}}{2}=54^0\) (ABC cân tại A) \(\Rightarrow sin\widehat{CAH}=sin54^0=\dfrac{HC}{AC}=\dfrac{BC}{2AC}\)

\(\Rightarrow\dfrac{BC}{AC}=2.sin54^0\)

\(sin54^0\) là số vô tỉ \(\Rightarrow\dfrac{BC}{AC}\) là số vô tỉ

Câu 3: TXĐ: \(x\ge0\)

\(\left(\sqrt[3]{x^2+26}-3\right)+3\left(\sqrt{x}-1\right)+\left(\sqrt{x+3}-2\right)=0\)

\(\Leftrightarrow\dfrac{x^2-1}{\sqrt[3]{\left(x^2+26\right)^2}+3\sqrt[3]{x^2+26}+9}+3\dfrac{x-1}{\sqrt{x}+1}+\dfrac{x-1}{\sqrt{x+3}+2}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\dfrac{x+1}{\sqrt[3]{\left(x^2+26\right)^2}+3\sqrt[3]{x^2+26}+9}+\dfrac{3}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x+3}+2}\right)=0\)

\(\Leftrightarrow x-1=0\Rightarrow x=1\)

Do \(\dfrac{x+1}{\sqrt[3]{\left(x^2+26\right)^2}+3\sqrt[3]{x^2+26}+9}+\dfrac{3}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x+3}+2}>0\) \(\forall x\ge0\)

Bình luận (1)
TH
Xem chi tiết
H24
3 tháng 2 2021 lúc 22:07

Câu 4:

Giả sử điều cần chứng minh là đúng

\(\Rightarrow x=y\), thay vào điều kiện ở đề bài, ta được:

\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}\) (luôn đúng)

Vậy điều cần chứng minh là đúng

Bình luận (3)
DH
3 tháng 2 2021 lúc 22:47

2) \(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)

⇔ \(\sqrt{\left(x-4\right)\left(x-1\right)}-2\sqrt{x-4}+2\sqrt{x+5}-\sqrt{\left(x+5\right)\left(x-1\right)}=0\)

⇔ \(\sqrt{x-4}.\left(\sqrt{x-1}-2\right)-\sqrt{x+5}\left(\sqrt{x-1}-2\right)=0\)

⇔ \(\left(\sqrt{x-4}-\sqrt{x+5}\right)\left(\sqrt{x-1}-2\right)=0\)

⇔ \(\left[{}\begin{matrix}\sqrt{x-4}-\sqrt{x+5}=0\\\sqrt{x-1}-2=0\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\sqrt{x-4}=\sqrt{x+5}\\\sqrt{x-1}=2\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}x\in\varnothing\\x=5\end{matrix}\right.\)

⇔ x = 5

Vậy S = {5}

Bình luận (0)
AH
4 tháng 2 2021 lúc 1:17

Bài 1:

ĐKĐB suy ra $x(x+1)+y(y+1)=3x^2+xy-4x+2y+2$

$\Leftrightarrow 2x^2+x(y-5)+(y-y^2+2)=0$

Coi đây là PT bậc 2 ẩn $x$

$\Delta=(y-5)^2-4(y-y^2+2)=(3y-3)^2$Do đó:

$x=\frac{y+1}{2}$ hoặc $x=2-y$. Thay vào một trong 2 phương trình ban đầu ta thu được:

$(x,y)=(\frac{-4}{5}, \frac{-13}{5}); (1,1)$

Bình luận (0)