1/Giải phương trình:
a) \(\sqrt[4]{4-x^2}-\sqrt[4]{x^4-16}+\sqrt{4x+1}+\sqrt{x^2+y^2-2y-3}=5-y\)
b) \(x^4-2y^4-x^2y^2-4x^2-7y^2-5=0\)
2/ Cho tam giác ABC cân tại A có \(\widehat{A}=108^o\). Chứng minh \(\dfrac{BC}{AC}\) là một số vô tỉ.
3/ Giải phương trình: \(\sqrt[3]{x^2+26}+3\sqrt{x}+\sqrt{x+3}=8\)
1/a) ĐKXĐ:
\(\left\{{}\begin{matrix}4-x^2\ge0\\x^4-16\ge0\\4x+1\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4-x^2\ge0\\\left(x^2-4\right)\left(x^2+4\right)\ge0\\x\ge\dfrac{-1}{4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^2-4\le0\\x^2-4\ge0\\x\ge\dfrac{-1}{4}\end{matrix}\right.\) \(\Rightarrow x=2\)
Thế vào pt ta được:
\(3+\sqrt{y^2-2y+1}=5-y\Leftrightarrow\left|y-1\right|=2-y\Rightarrow y=\dfrac{3}{2}\)
Vậy pt có cặp nghiệm duy nhất \(x=2;y=\dfrac{3}{2}\)
2/ Muốn giải chi tiết thì buộc phải sử dụng kiến thức lớp 11 (các công thức lượng giác nhân đôi, nhân ba), còn lớp 9 thì chỉ có cách thừa nhận các giá trị lượng giác của góc 108 hoặc 54 độ là 1 số vô tỉ.
Gọi H là trung điểm BC \(\Rightarrow BH=\dfrac{BC}{2}\)
\(\widehat{CAH}=\dfrac{\widehat{A}}{2}=54^0\) (ABC cân tại A) \(\Rightarrow sin\widehat{CAH}=sin54^0=\dfrac{HC}{AC}=\dfrac{BC}{2AC}\)
\(\Rightarrow\dfrac{BC}{AC}=2.sin54^0\)
Mà \(sin54^0\) là số vô tỉ \(\Rightarrow\dfrac{BC}{AC}\) là số vô tỉ
Câu 3: TXĐ: \(x\ge0\)
\(\left(\sqrt[3]{x^2+26}-3\right)+3\left(\sqrt{x}-1\right)+\left(\sqrt{x+3}-2\right)=0\)
\(\Leftrightarrow\dfrac{x^2-1}{\sqrt[3]{\left(x^2+26\right)^2}+3\sqrt[3]{x^2+26}+9}+3\dfrac{x-1}{\sqrt{x}+1}+\dfrac{x-1}{\sqrt{x+3}+2}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\dfrac{x+1}{\sqrt[3]{\left(x^2+26\right)^2}+3\sqrt[3]{x^2+26}+9}+\dfrac{3}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x+3}+2}\right)=0\)
\(\Leftrightarrow x-1=0\Rightarrow x=1\)
Do \(\dfrac{x+1}{\sqrt[3]{\left(x^2+26\right)^2}+3\sqrt[3]{x^2+26}+9}+\dfrac{3}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x+3}+2}>0\) \(\forall x\ge0\)