Cho \(a\ge3;b\ge4;c\ge2\) Tìm GTLN của \(\frac{ab\sqrt{c-2}+bc\sqrt{a-3}+ac\sqrt{b-4}}{abc}\)
Cho a+b> 8 và \(b\ge3\) . cm :27a2+10b3 >945
Đặt \(\left\{{}\begin{matrix}a+b=8+x\\b=3+y\end{matrix}\right.\left(x,y\in N,xy\ne0\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5+x-y\\b=3+y\end{matrix}\right.\)
Khi đó:
\(27a^2+10b^3=27\left(5+x-y\right)^2+10\left(3+y\right)^3\)
\(=27\left(25+x^2+y^2+10x-2xy-10y\right)+10\left(27+y^3+9y^2+27y\right)\)
\(=945+27\left(x^2+y^2-2xy\right)+270x+10y^3+90y^{2\text{}}\)
\(=945+27\left(x-y\right)^2+270x+10y^3+90y^2>945\)
Vậy \(27a^2+10b^3>945\)
Mọi người giúp em bài này với ạ
Chúng minh rằng nếu \(\left|x\right|\ge3,\left|y\right|\ge3,\left|z\right|\ge3\) thì \(A=\dfrac{xy+yz+zx}{xyz}\le1\)
Cho a+b+c+ab+bc+ca=6. Cmr \(a^2+b^2+c^2\ge3\)
Với mọi số thực x, y ta luôn có:
\(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\)
Do đó:
\(a^2+1\ge2a\)
\(b^2+1\ge2b\)
\(c^2+1\ge2c\)
\(a^2+b^2\ge2ab\)
\(b^2+c^2\ge2bc\)
\(c^2+a^2\ge2ca\)
Cộng vế với vế:
\(3\left(a^2+b^2+c^2\right)+3\ge2\left(a+b+c+ab+bc+ca\right)\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+3\ge12\)
\(\Leftrightarrow a^2+b^2+c^2\ge3\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
Cho a,b>0, ab=1. CMR \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{a+b}\ge3\)
\(P=\dfrac{a+b}{ab}+\dfrac{2}{a+b}=a+b+\dfrac{2}{a+b}\)
\(P=\dfrac{a+b}{2}+\dfrac{2}{a+b}+\dfrac{a+b}{2}\)
\(P\ge2\sqrt{\dfrac{\left(a+b\right).2}{2\left(a+b\right)}}+\dfrac{2\sqrt{ab}}{2}=3\)
Dấu "=" xảy ra khi \(a=b=1\)
Cho a,b,c>0. Chứng minh rằng: \(\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}\ge3\)
Cho a + b + c = 3. Cmr : \(a^2+b^2+c^2\ge3\)
Với mọi số thực a;b;c ta luôn có:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2ac+2bc\)
\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ca\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2=\frac{1}{3}.3^2=3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
cho các số thực a,b,c thỏa mãn \(a+2b+3c\ge4\) và \(a-b-3c\ge1\).CMR
\(a+b+c\ge3\)
Cho \(\sqrt{ab}+\sqrt{a}+\sqrt{b}\ge3\). Tìm giá trị nhỏ nhất của P = \(\dfrac{a^2}{b}+\dfrac{b^2}{a}\).
Cho a > b > 0. CMR : \(a+\dfrac{1}{b\left(a-b\right)}\ge3\)
\(b\left(a-b\right)\le\dfrac{\left(b+a-b\right)^2}{4}=\dfrac{a^2}{4}\)
\(\Rightarrow\dfrac{1}{b\left(a-b\right)}\ge\dfrac{4}{a^2}\)
\(\Rightarrow a+\dfrac{1}{b\left(a-b\right)}\ge a+\dfrac{4}{a^2}=\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{4}{a^2}\ge3\sqrt[3]{\dfrac{a}{2}\dfrac{a}{2}\dfrac{4}{a^2}}=3\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\dfrac{a}{2}=\dfrac{4}{a^2}\\b=a-b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
1. Cho a > b > 0 .Chứng minh rằng :
\(a,a+\frac{1}{b\left(a-b\right)}\ge3\)
\(b,a+\frac{4}{\left(a-b\right)\left(b+1\right)^2}\ge3\)
\(c,a+\frac{1}{b\left(a-b\right)^2}\ge2\sqrt{2}\)
Bạn tham khảo:
Câu hỏi của tran duc huy - Toán lớp 10 | Học trực tuyến