Cho Tam giác ABC vuông tại a có ab 8 cm, ac = 7, bc= 10 cm chứng minh Tam giác abc vuông
Cho Tam giác ABC vuông tại a có ab 8 cm, ac = 7, bc= 10 cm chứng minh Tam giác abc vuông ?
Giải chi tiết Cho tam giác ABC có AB = 6 cm; AC = 8 cm; BC = 10 cm.
a) Chứng minh tam giác ABC vuông tại A.
b) Vẽ tia phân giác BD của góc ABC (D thuộc AC), từ D vẽ DE ^ BC (E Î BC).
Chứng minh DA = DE.
c) Kéo dài ED và BA cắt nhau tại F. Chứng minh tam giác BFC cân
d) Chứng minh đường thẳng BD là đường trung trực của đoạn thẳng FC.
a. Ta có: \(AB^2+AC^2=6^2+8^2=100=BC^2\)
Áp dụng định lí Py-ta-go đảo ta có: tam giác ABC vuông tại A
b. Xét \(\Delta ABD\) vuông tại A và \(\Delta EBD\) vuông tại E có: \(\left\{{}\begin{matrix}BDchung\\\widehat{ABD}=\widehat{EBD}\end{matrix}\right.\)
\(\Rightarrow\)\(\Delta ABD\)=\(\Delta EBD\) \(\Rightarrow\)DA=DE(dpcm)
c. Xét \(\Delta FAD\) vuông tại A và \(\Delta CED\) vuông tại E có: \(\left\{{}\begin{matrix}DA=DE\\\widehat{ADF}=\widehat{EDC}\end{matrix}\right.\)
\(\Rightarrow\)\(\Delta FAD\)=\(\Delta CED\)\(\Rightarrow\)AF=EC
Mà BF=AB+BF, BC=BE+EC, AF=EC, AB=BE
\(\Rightarrow\)BF=BC\(\Rightarrow\)\(\Delta BFC\) cân tại B
d. Xét \(\Delta BFC\) cân tại B có: CA,FE là đường cao giao nhau tại D
\(\Rightarrow\)BD cũng là đường cao của \(\Delta BFC\)
mà \(\Delta BFC\) cân tại B nên BD vừa là đường cao vừa là đường trung tuyến
\(\Rightarrow\) BD là đường trung trực (dpcm)
Cho tam giác ABC có AB = 6 cm;BC = 10 cm;AC=8 cm
a, chứng tỏ tam giác ABC vuông tại A
b, Vẽ phân giác BM của góc B (M thuộc AC) từ M Vẽ MN vuông BC (Nthuộc BC).Chứng minh rằng MA=MN
c,Tia NM cắt tia BA tại P.Chứng minh tam giác AMP =tam giác NMC rồi suy ra MP > MN
Hình tự vẽ
a) ΔABC vuông tại A.
Ta có: AB2 + BC2 = 62 + 82 = 100 (cm)
BC2 = 102 = 100 (cm)
Vì AB2 + BC2 = BC2 ( = 100 cm)
Nên ΔABC vuông tại A.
b) MA = MN.
Xét hai tam giác vuông ABM và NBM có:
BM: cạnh chung
∠ABM = ∠NBM (BM là phân giác của ∠ABC)
Do đó:ΔABM = ΔNBM (cạnh huyền - góc nhọn)
⇒ MA = MN (hai cạnh tương ứng)
c) ΔAMP = ΔNMC. MP > MN.
Xét hai tam giác vuông AMP và NMC có:
AM = MN (câu b)
∠AMP = ∠NMC (hai góc đối đỉnh)
Do đó: ΔAMP = ΔNMC (cạnh góc vuông - góc nhọn kề)
⇒ PM = MC (hai cạnh tương ứng) (1)
Xét ΔNMC vuông tại N có: MC > MN (định lí) (2)
Từ (1) và (2) suy ra: MP > MN
Phần tự luận
Nội dung câu hỏi 1:
Cho tam giác ABC có AB = 6cm; AC = 8 cm; BC = 10 cm
a) Chứng minh tam giác ABC vuông
a) Xét tam giác ABC có:
A B 2 + A C 2 = 6 2 + 8 2 = 100 = B C 2
Tam giác ABC vuông tại A.
cho tam giác ABC cân tại A, Kẻ BE vuông góc với AC tại E và CF vuông góc với AB tại F . Chứng minh tam giác BFC= tam giác CEB . Gọi D là trung điểm của BC. Chứng minh tam giác BFD = tam giác CED và suy ra tam giác DEF cân. Cho biết AC=10(cm);BE=8(cm). Tính độ dài AE và EC. Cho góc A=40 độ . Tính góc AFE
a) Xét ΔBFC vuông tại F và ΔCEB vuông tại E có
BC chung
\(\widehat{FBC}=\widehat{ECB}\)(hai góc ở đáy của ΔBAC cân tại A)
Do đó: ΔBFC=ΔCEB(cạnh huyền-góc nhọn)
Cho tam giác ABC vuông tại A có AB = 6 cm AC = 8 cm Tính độ dài BC Ê đường phân giác của B cắt AC tại D vẽ DE vuông góc BC H thuộc BC Chứng minh tam giác ABD bằng tam giác AC BD kẻ HB cắt ba tại f chứng minh BD vuông góc với c f
Tam giác ACBD là cái gì vậy bạn
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
Cho tam giác ABC vuông tại A có AB= 6cm ,AC= 8CM , BC=10 cm .Tia phân giác góc A cắt cạnh BC tại D .Từ D kẻ DK vuông góc với AC( \(K\in AC\))
-độ dài BD = 10/7 cm
-độ dài DC = 40/7 cm
a. Chứng minh tam giác KDC đồng dạng với tam giác ABC
b.Độ dài Dk =? cm
c.CM: KD.AC=AB.KC
a, xét tam giác kdc và tam giác abc có
góc dkc=bac=90(gt)
góc c chung
=>tam giác kdc đồng dạng tam giác abc(gg)
c, từ cma có tam giác kdc đồng dạng tam giác abc(gg)
=>\(\frac{kd}{ab}=\frac{kc}{ac}\)
Cho tam giác ABC cân tại A có Ab bằng 6 com,Ac = 8 cm a, Tính Bc b,Trên tia đối của Ab lấy M sao cho AB = AM . CMR tam giác ABC bằng tam giác ACM Từ đó chứng minh CA là phân giác của góc BCM c,Kẻ Ah vuông góc BC,AK vuông góc CM. chứng minh HK song song BM d,HK cắt AC tại I. chứng minh AC là đường trung trực của HK
bài toán vô lí quá nếu mà cân tại A thì AB = AC chứ đáng lẽ ra là vuông tại A chứ:
nếu là vuông tại A thì có:
a.Xét tam giác ABC vuông tại A:
BC2=AB2+AC2(định lí pytago)
hay BC2=62+82
BC2=36+64
BC2= \(\sqrt{100}\)
BC=10(cm)
vậy BC=10cm
Xét ΔABC và ΔACM có:
AB=AM(gt)
AC chung
^CAB=^CAM=90o
=>ΔABC=ΔACM(trường hợp gì tự biết) :)