Cho ΔABC có góc A= 80 độ; góc C= 50 độ. Trên tia đối của tia AC lấy điểm D và vẽ góc CDE so le trong với góc C và bằng góc C. Gọi AM là tia phân giác của góc BAD. Chứng minh :
a) DE song song với AM.
b) BC song song với AM.
a)Cho ΔABC có a=5,b=6,góc ACB=30 độ.Tính cạnh AB
b)Cho ΔABC cân tại A,có cạnh AB=a.Tính số đo các cạnh,các góc còn lại của ΔABC và tính bán kính đường tròn ngoại tiếp ΔABC biết góc A=70 độ
cHO ΔABC có góc A= 80 độ; góc C= 50 độ. Trên tia đối của tia AC lấy điểm D và vẽ góc CDE so le trong với góc C và bằng góc C. Gọi AM là tia phân giác của góc BAD. Chứng minh :
a) DE song song với AM.
b) BC song song với AM.
a) Ta có góc CDE bằng góc C và bằng 50 độ
Góc DAB + Góc BAC = 180 độ ( kề bù )
Mà BAC = 80 độ ( gt ) nên góc DAB = 180 độ - 80 độ = 100 độ
AM là tia phân giác của góc DAB nên góc DAM = 100 độ / 2 = 50 độ
Mặt khác: góc DAM = góc CDE = 50 độ và nằm ở vị trí SLT nên DE//AM
b) ta có: góc CDE so le trong với góc C và bằng góc C ( gt ) nên DE//BC
Mặt khác: DE//BC
DE//MA
Vậy: BC//MA ( định lí )
Cho ΔABC có góc A = 80 độ, góc C = 50độ . Trên tia đối của tia AC lấy điểm D, vẽ góc CDE bằng và so le trong với góc C của ΔΔABC . Gọi AM là tia phân giác của góc BAD . Vẽ hình vàchứng minh rằng:
a) DE song song AM. b) BC song song AM.
Giup mk vs ah !
a) AM là tia phân giác của góc BAD (gt)
=> \(\widehat{DAM}=\widehat{MAB}=\dfrac{180^o-\widehat{BAC}}{2}=\dfrac{180^o-80^o}{2}=\dfrac{100^o}{2}=50^o\) (1)
Trên tia đối của tia AD là tia đối tia AC, \(\widehat{CDE}\) bằng và so le trong với góc C của ΔABC (gt)
=> \(\widehat{CDE}=50^o\) (2)
Từ (1) và (2) => \(\widehat{CDE}=\widehat{MAD}=50^o\)
Mà 2 góc này ở vị trí so le trong
=> DE//AM (*)
b) Cách 1: Nếu bạn đã học qua kiến thức này thì bạn có thể dùng
Trên tia đối của tia AD là tia đối tia AC, \(\widehat{CDE}\) bằng và so le trong với góc C của ΔABC (gt)
=> BC//DE (**)
Từ (*) và (**) => BC//AM
Cách 2: Nếu bạn chưa đc học kiến thức của Cách 1 thì dùng cách này
\(\widehat{MAC}+\widehat{ACB}=\left(50^o+80^o\right)+50^o=130^o+50^o=180^o\)
=> \(\widehat{MAC}\) và \(\widehat{ACB}\) là 2 góc trong cùng phía bù nhau
=> BC//AM
Chúc bạn học tốt!!!
Cho ΔABC có BC=3; góc A=40°; góc C=60° a) Tính bán kính đường tròn ngoại tiếp ΔABC b) Tính cạnh AC=? c) Tính độ dài trung tuyến kẻ từ A
a: BC/sinA=2R
=>2R=3/sin40
=>\(R\simeq2,33\left(cm\right)\)
b: góc B=180-40-60=80 độ
\(\dfrac{AC}{sinB}=\dfrac{BC}{sinA}=\dfrac{AB}{sinC}\)
=>AC/sin80=3/sin40=AB/sin60
=>\(AC\simeq5\left(cm\right)\) và \(AB\simeq4,04\left(cm\right)\)
c: \(AM=\sqrt{\dfrac{AB^2+AC^2}{2}-\dfrac{BC^2}{4}}=\sqrt{\dfrac{5^2+4,04^2}{2}-\dfrac{3^2}{4}}\simeq4,29\left(cm\right)\)
Cho Δ A B C = Δ H I K biết A ^ + H ^ = 80 ° , I ^ = 70 ° . Số đo góc C ^ là:
A. C ^ = 30 °
B. C ^ = 40 °
C. C ^ = 50 °
D. C ^ = 70 °
Cho ΔABC có góc A=100 độ, góc B= 50 độ. Tia phân giác trong tại đỉnh B cắt tia phân giác ngoài tại đỉnh C của ΔABC tại O.
Tính số đo các góc BOC, góc AOB
* Cho ΔABC vuông tại A, biết AC= 12cm, BC=15cm
a. Giải tam giác ABC
b. Tính độ dài đường cao AH, đường phân giác AD của ΔABC
* Cho ΔABC có 3 góc nhọn, kẻ đường cao AH.
a. CM: sinA+cos A>1
b. CM: BC=AH. (cotgB+cotgC)
c. Biết AH=6cm, góc B=\(60^0\), góc C=\(45^0\). Tính diện tích ΔABC
Bài 2:
b: \(AH\cdot\left(\cot\widehat{B}+\cot\widehat{C}\right)\)
\(=AH\cdot\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)\)
\(=AH\cdot\dfrac{BC}{AH}=BC\)
ΔABC có A^ = 80°, B^ = 60°
a. So sánh độ dài các cạnh trong ΔABC
b. M ϵ BC sao cho BM = BA. Tia phân giác B^ cắt AC tại D.
c/m: ΔBAD = ΔBMD
c. MD cắt BA = H.
c/m: △DHC cân
d. c/m: BD>AM. Tính góc DHC=?
e. c/m: BH = CK
a: góc C=180-80-60=40 độ
Vì góc C<góc B<góc A
nên AB<AC<BC
b: Xét ΔBAD và ΔBMD có
BA=BM
góc ABD=góc MBD
BD chung
=>ΔBAD=ΔBMD
c: Xét ΔDAH và ΔDMC có
góc DAH=góc DMC
DA=DM
góc ADH=góc MDC
=>ΔDAH=ΔDMC
=>DH=DC
=>ΔDHC cân tại D
Cho ΔABC có góc A= 90 độ, BC=10,AC=8,Tính AB?
Theo định lí Pytago ta có
\(BC^2=AB^2+AC^2\\ AB^2=BC^2-AC^2=\sqrt{10^2-8^2}\\ =\sqrt{100-64}=6\)