CMR:
a^2013-a^2011 chia hết cho 6(a thuộc Z)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
a) Cho phân số A= 3n-5/n+4 (n thuộc Z,n khác -4). Tìm n để A có giá trị nguyên
b) so sánh A=2013^2010+1/2013^2011+1 và B=2013^2011-2/2013^2012-2
c) Tìm các số nguyên n sao cho 3n-16 chia hết cho n+3
CMR:A=a^5-a chia hết cho 30 với a thuộc z
a5-a = a . ( a4 -1 ) = a(a-1)(a+1)(a2+1)
a(a-1) là tích hai số tự nhiên liên tiếp nên chia hết cho 2
(a-1)a(a+1) là tích ba số tự nhiên liên tiếp nên chia hết cho 3
mà (2,3)=1 ⇒ a(a-1)(a+1)(a2+1) ⋮ (2.3) = 6
*Nếu a = 5q (q ∈ N) =>a(a-1)(a+1)(a2+1) ⋮ 5
Nếu a = 5q + 1 => a - 1 = 5q
Nếu a = 5q + 2 => a2 + 1= (5q+2)2+1=25q2 +5
Nếu a = 5q+3 => a2 + 1= (5q+3)2+1=25q2 +10
Nếu a = 5q+4 => a +1 = 5q +5
Vậy a5 -5 chia hết cho30 với a thuộc Z
Cho a,b thuộc Z. CMR:a^2-17ab+b^2 chia hết cho 25<=>a chia hết cho 5 và b chia hết cho 5.
Giúp mk nha, ai nhanh+đúng mk tick!!!!!!!!
chứng minh rằng A=2011^n+2012^n+2013^n (n thuộc N) chia hết cho 2
2011n luôn lẻ
2012n luôn chẵn
2013n luôn lẻ
=> 2011n + 2012n + 2013n luôn chẵn
=> Chia hết cho 2
=> ĐPCM
Bài 1:CMR:11.a+2.b dấu mũi tên hai chiều 18.a+5.b chia hết cho 19
Bài 2:Cho số tự nhiên a không chia hết cho 2 và 3 .CMR:A=4.a2+3.a+5 chia hết cho 6
Bài 3:CMR:n2+n+2 không chia hết cho 5,với mọi n thuộc N
Bài 4:CMR:a3-5.a chia hết cho 6 với mọi a thuộc N ,lớn hơn 1
Bai 5:CMR:a+2.b chia het cho 3 khi và chỉ khi b+2.a chia hết cho 3
( Làm chi tiết vào nha !)
Mấy bạn làm hộ mình nha , bài khó quá không biết làm thế nào nữa.Xin trân thành cảm ơn nếu các bạn làm chi tiết.
\(CMR:a^5-a\) chia hết cho 30 với a thuộc Z
1)CMR:
a)a3-7a chia hết cho 6
b)a3-13a chia hết cho 6
c)a3+5a chia hết cho 6
d)a3+11a chia hết cho 6
2) Cho a+b+c chia hết cho 6 . CMR:a3+b3+c3 chia hết cho 6
3)a3-a chia hết cho 24a
4)a3b-b3a chia hết cho 6(a,b thuộc Z)
Xét \(\left(a^3+b^3+c^3+d^3\right)-\left(a+b+c+d\right)\)
\(=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)+\left(d^3-d\right)\)
Ta có \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)⋮6\)(vì tích của 3 số nguyên/số tự nhiên liên tiếp)
Tương tự ta có \(\left(b^3-b\right)⋮6;\left(c^3-c\right)⋮6;\left(d^3-d\right)⋮6\)
\(\Rightarrow\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)+\left(d^3-d\right)⋮6\)
\(\Rightarrow\left(a^3+b^3+c^3+d^3\right)-\left(a+b+c+d\right)⋮6\)
Mà \(a+b+c+d⋮6\Rightarrow a^3+b^3+c^3+d^3⋮6\left(ĐPCM\right)\)
P/S: bt làm có bài này thôi :v
3) a=2=>a^3-a=8-2=6 ko chia hết cho 48 vô lí :(
ra nhieu the ai lam het duoc vay ban
Chứng minh rằng nếu giá trị của biểu thức f(x)=ax^2+bx+c chia hết cho 2011 với mọi x thuộc Z(a,b,c,d thuộc Z) thì các hệ số a,b,c đều chia hết cho 2011
\(f\left(0\right)=c\) mà \(f\left(0\right)⋮2011\Rightarrow c⋮2011\)
\(f\left(1\right)⋮2011\Rightarrow a+b+c⋮2011\Rightarrow a+b⋮2011\)
\(f\left(-1\right)⋮2011\Rightarrow a-b+c⋮2011\Rightarrow a-b⋮2011\)
\(\Rightarrow\left(a+b\right)+\left(a-b\right)⋮2011\Rightarrow2a⋮2011\)
Mà 2 và 2011 nguyên tố cùng nhau \(\Rightarrow a⋮2011\)
\(\left\{{}\begin{matrix}a⋮2011\\a+b⋮2011\end{matrix}\right.\) \(\Rightarrow b⋮2011\)
1. Chứng minh rằng m^3-13m chia hết cho 6 với mọi m thuộc z
2. Không dùng máy tính bỏ túi, cmr: 685^3+315^3 chia hết 25000
3.CMR: A=75.(4^1975+4^1974+...+4^2+5)+25 chia hết cho 4^1976
4. CMR:a^5-a chia hết cho 5 với mọi số nguyên a
5. a^4-b^4 chia hết cho 5 với mọi số nguyên a,b