Những câu hỏi liên quan
DN
Xem chi tiết
NT
3 tháng 3 2023 lúc 23:43

Δ=(2m+2)^2-4*4m

=4m^2+8m+4-16m

=4m^2-8m+4=(2m-2)^2

Để phương trình có hai nghiệm phân biệt thì 2m-2<>0

=>m<>1

x1+x2>2 và x1x2>1

=>2m+2>2 và 4m>1

=>m>1/4

Bình luận (0)
YK
Xem chi tiết
MH
19 tháng 3 2023 lúc 20:24

\(2x^2-\left(4m+3x\right)x+2m^2-1=0\)

\(-x^2-4mx+2m^2-1=0\)

\(\Delta=\left(4m\right)^2+4\left(2m^2-1\right)=24m^2-4\)

Để phương trình có 2 nghiệm phân biệt

\(\Leftrightarrow\Delta>0\Leftrightarrow24m^2-4>0\Leftrightarrow m>\dfrac{1}{\sqrt{6}}\)

Vì phương trình có 2 nghiệm phân biệt, Áp dụng hệ thức Vi ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-4m\\x_1.x_2=1-2m^2\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=6\)

\(\Rightarrow\left(x_1+x_2\right)^2-2\left(x_1.x_2\right)=6\)

\(\Leftrightarrow16m^2-2\left(1-2m^2\right)=6\)

\(\Leftrightarrow20m^2=8\)

\(\Leftrightarrow m^2=\dfrac{2}{5}\Leftrightarrow\left[{}\begin{matrix}m=\sqrt{\dfrac{2}{5}}\left(TM\right)\\m=-\sqrt{\dfrac{2}{5}}\left(\text{Loại vì m}>\dfrac{1}{\sqrt{6}}\right)\end{matrix}\right.\)

Vậy ...

Bình luận (0)
PT
Xem chi tiết
DP
Xem chi tiết
SS
Xem chi tiết
LH
28 tháng 5 2021 lúc 22:25

Xét \(\Delta=4\left(m-1\right)^2-4.\left(-3\right)=4\left(m-1\right)^2+12>0\forall m\)

=>Pt luôn có hai nghiệm pb

Theo viet:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1.x_2=-3\ne0\forall m\end{matrix}\right.\)

Có \(\dfrac{x_1}{x_2^2}+\dfrac{x_2}{x_1^2}=m-1\)

\(\Leftrightarrow x_1^3+x_2^3=\left(m-1\right)x_1^2.x_2^2\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=\left(m-1\right).\left(-3\right)^2\)

\(\Leftrightarrow8\left(m-1\right)^3-3\left(-3\right).2\left(m-1\right)=9\left(m-1\right)\)

\(\Leftrightarrow8\left(m-1\right)^3+9\left(m-1\right)=0\)

\(\Leftrightarrow\left(m-1\right)\left[8\left(m-1\right)^2+9\right]=0\)

\(\Leftrightarrow m=1\)(do \(8\left(m-1\right)^2+9>0\) với mọi m)

Vậy m=1

Bình luận (0)
H24
28 tháng 5 2021 lúc 22:29

Vì \(ac< 0\) \(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-3\end{matrix}\right.\)

Mặt khác: \(\dfrac{x_1}{x_2^2}+\dfrac{x_2}{x_1^2}=m-1\) \(\Rightarrow\dfrac{\left(x_1+x_2\right)\left(x_1^2+x_2^2-x_1x_2\right)}{x_1^2x_2^2}=m-1\)

  \(\Leftrightarrow\dfrac{\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]}{x_1^2x_2^2}=m-1\)

  \(\Rightarrow\dfrac{\left(2m-2\right)\left(4m^2-8m+13\right)}{9}=m-1\)

  \(\Leftrightarrow...\)  

 

Bình luận (0)
NA
Xem chi tiết
NN
Xem chi tiết
HT
17 tháng 3 2022 lúc 20:01

ê phải n.nam 9c ko

 

Bình luận (0)
QT
Xem chi tiết
AH
30 tháng 5 2021 lúc 18:49

Lời giải:

Để pt có 2 nghiệm dương phân biệt thì:

\(\left\{\begin{matrix} \Delta=25-4(m-2)>0\\ S=5>0\\ P=m-2>0\end{matrix}\right.\Leftrightarrow 2< m< \frac{33}{4}\)

Khi đó:

\(2\left(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}\right)=3\Leftrightarrow 4(\frac{1}{x_1}+\frac{1}{x_2}+\frac{2}{\sqrt{x_1x_2}})=9\)

\(\Leftrightarrow 4\left(\frac{5}{m-2}+\frac{2}{\sqrt{m-2}}\right)=9\)

\(\Leftrightarrow 4(5t^2+2t)=9\) với $t=\frac{1}{\sqrt{m-2}}$

$\Rightarrow t=\frac{1}{2}$

$\Leftrightarrow m=6$ (thỏa)

 

Bình luận (2)
YK
Xem chi tiết
MH
12 tháng 3 2023 lúc 20:23

\(-x^2+\left(m+2\right)x+2m=0\)

\(\Delta=\left(m+2\right)^2+8m=\left(m+6\right)^2-32\)

Để phương trình có 2 nghiệm phân biệt

<=> \(\Delta>0\Leftrightarrow\left(m+2\right)^2>32\Leftrightarrow m>\sqrt{32}-2\)

Vì phương trình có 2 nghiệm phân biệt

Áp dụng hệ thức vi ét

\(\Rightarrow x_1+x_2=m+2\)

=> \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1+4x_2=0\end{matrix}\right.\)

\(\Rightarrow m=-3x_2-2\)

Bạn xem lại đề chứ k tìm được m luôn á

Bình luận (1)