Những câu hỏi liên quan
DA
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
NT
8 tháng 3 2022 lúc 19:55

b: =>|x+2|+|2x-1|<x+1(1)

Trường hợp 1: x<-2

(1) sẽ là -x-2-2x+1<x+1

=>-3x-1<x+1

=>-4x<2

hay x>-1/2(loại)

Trường hợp 2: -2<=x<1/2

(1) sẽ là x+2+1-2x<x+1

=>-x+3<x+1

=>-2x<-2

hay x>1(loại)

Trường hợp 3: x>=1/2

(1) sẽ là x+2+2x-1<x+1

=>3x+1<x+1

=>x<0(loại)

Vậy: BPT vô nghiệm

Bình luận (2)
VA
9 tháng 3 2022 lúc 8:12

b: =>|x+2|+|2x-1|<x+1(1)

Trường hợp 1: x<-2

(1) sẽ là -x-2-2x+1<x+1

=>-3x-1<x+1

=>-4x<2

hay x>-1/2(loại)

Trường hợp 2: -2<=x<1/2

(1) sẽ là x+2+1-2x<x+1

=>-x+3<x+1

=>-2x<-2

hay x>1(loại)

Trường hợp 3: x>=1/2

(1) sẽ là x+2+2x-1<x+1

=>3x+1<x+1

=>x<0(loại)

Vậy: BPT vô nghiệm

Bình luận (0)
 Thư Phan đã xóa
LA
4 tháng 9 2023 lúc 13:43

b: =>|x+2|+|2x-1|<x+1(1)

Trường hợp 1: x<-2

(1) sẽ là -x-2-2x+1<x+1

=>-3x-1<x+1

=>-4x<2

hay x>-1/2(loại)

Trường hợp 2: -2<=x<1/2

(1) sẽ là x+2+1-2x<x+1

=>-x+3<x+1

=>-2x<-2

hay x>1(loại)

Trường hợp 3: x>=1/2

(1) sẽ là x+2+2x-1<x+1

=>3x+1<x+1

=>x<0(loại)

Vậy: BPT vô nghiệm

giống Nguyễn Lê Phước Thịnh nhé

Bình luận (2)
NH
Xem chi tiết
H24
17 tháng 2 2017 lúc 14:20

Bai1:

\(-2x+\frac{3}{5}\le\frac{3\left(2x-7\right)}{3}\Leftrightarrow-10x+3\le5\left(2x-7\right)\Leftrightarrow-10x+3\le10x-35\)

\(\Leftrightarrow\left(10+10\right)x\ge3+35\Rightarrow x\ge\frac{38}{20}=\frac{19}{10}\)

Bài

\(\left\{\begin{matrix}x+m-1>0\\3m-2-x>0\end{matrix}\right.\Leftrightarrow\left(I\right)\left\{\begin{matrix}x>1-m\\x< 3m-2\end{matrix}\right.\)

Hệ (I) có nghiệm cần m thỏa mãn:

\(1-m< 3m-2\Leftrightarrow1+2< 3m+m\Rightarrow m>\frac{3}{2}\)

Kết luận: để hệ có nghiệm cần: m>3/2

Bình luận (0)
SH
Xem chi tiết
H24
15 tháng 2 2017 lúc 23:53

\(\frac{2x-5}{!x-3!}+1>0\Leftrightarrow\frac{2x-5+!x-3!}{!x-3}>0\)

do !x-3!>0 mọi x khác 3=> Bất phương trình tương đương

\(2x-5+!x-3!>0\Leftrightarrow!x-3!>5-2x\)

TH(1) x<3 <=>3-x>5-2x=> x>2

Kết luận(1) \(2< x< 3\)

TH(2) \(x\ge3\Leftrightarrow x-3>5-2x\Rightarrow3x>8\Rightarrow x>\frac{8}{3}\)

Kết luận(2) \(x\ge3\)

(1)và(2) nghiệm của Bpt là: x>2

Bình luận (0)
H24
Xem chi tiết
NT
7 tháng 5 2020 lúc 22:08

Bài 1:

a) Ta có: \(\frac{4}{5}x-3=\frac{1}{5}x\left(4x-15\right)\)

\(\Leftrightarrow\frac{4x}{5}-3=\frac{4x^2}{5}-3x\)

\(\Leftrightarrow\frac{12x}{15}-\frac{45}{15}-\frac{12x^2}{15}+\frac{45x}{15}=0\)

Suy ra: \(12x-45-12x^2+45x=0\)

\(\Leftrightarrow-12x^2+57x-45=0\)

\(\Leftrightarrow-12x^2+12x+45x-45=0\)

\(\Leftrightarrow-12x\left(x-1\right)+45\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-12x+45\right)=0\)

\(\Leftrightarrow-3\left(x-1\right)\left(4x-15\right)=0\)

\(-3\ne0\)

nên \(\left[{}\begin{matrix}x-1=0\\4x-15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\4x=15\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{15}{4}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{1;\frac{15}{4}\right\}\)

b) Ta có: \(\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}=\frac{\left(x-3\right)\left(3-x\right)}{4}\)

\(\Leftrightarrow\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}+\frac{\left(x-3\right)^2}{4}=0\)

\(\Leftrightarrow\frac{12\left(x-3\right)}{12}-\frac{2\left(x-3\right)\left(2x-5\right)}{12}+\frac{3\left(x-3\right)^2}{12}=0\)

Suy ra: \(12\left(x-3\right)-2\left(2x^2-11x+15\right)+3\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow12x-36-4x^2+22x-30+3x^2-18x+27=0\)

\(\Leftrightarrow-x^2+16x-39=0\)

\(\Leftrightarrow-\left(x^2-16x+39\right)=0\)

\(\Leftrightarrow x^2-13x-3x+39=0\)

\(\Leftrightarrow x\left(x-13\right)-3\left(x-13\right)=0\)

\(\Leftrightarrow\left(x-13\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-13=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\\x=3\end{matrix}\right.\)

Vậy: Tập nghiệm S={3;13}

c) Ta có: \(\frac{\left(3x+1\right)\left(3x-2\right)}{3}+5\left(3x+1\right)=\frac{2\left(2x+1\right)\left(3x+1\right)}{3}+2x\left(3x+1\right)\)

\(\Leftrightarrow\frac{9x^2-3x-2}{3}+5\left(3x+1\right)-\frac{12x^2+10x+2}{3}-2x\left(3x+1\right)=0\)

\(\Leftrightarrow\frac{9x^2-3x-2-12x^2-10x-2}{3}-6x^2+13x+5=0\)

\(\Leftrightarrow\frac{-3x^2-13x-4}{3}+\frac{3\left(-6x^2+13x+5\right)}{3}=0\)

Suy ra: \(-3x^2-13x-4-18x^2+39x+15=0\)

\(\Leftrightarrow-21x^2+26x+11=0\)

\(\Leftrightarrow-21x^2-7x+33x+11=0\)

\(\Leftrightarrow-7x\left(3x+1\right)+11\left(3x+1\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(-7x+11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\-7x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\-7x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{3}\\x=\frac{11}{7}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{-\frac{1}{3};\frac{11}{7}\right\}\)

Bình luận (0)
EN
Xem chi tiết
TP
29 tháng 12 2019 lúc 6:32

ĐKXĐ: \(\left[{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\)

\(\frac{\left|2x-1\right|}{\left(x+1\right)\left(x-2\right)}>\frac{1}{2}\) (*)

+) Nếu \(x>2\) thì (*) \(\Leftrightarrow\frac{2x-1}{x^2-x-2}>\frac{1}{2}\)

\(\Leftrightarrow4x-2>x^2-x-2\)

\(\Leftrightarrow x^2-5x< 0\)

\(\Leftrightarrow x\left(x-5\right)< 0\)

\(\Leftrightarrow0< x< 5\)

\(\Leftrightarrow2< x< 5\)

+) Nếu \(x< -1\) thì (*) \(\Leftrightarrow\frac{1-2x}{x^2-x-2}>\frac{1}{2}\)

\(\Leftrightarrow2-4x>x^2-x-2\)

\(\Leftrightarrow x^2+3x-4< 0\)

\(\Leftrightarrow\left(x+4\right)\left(x-1\right)< 0\)

\(\Leftrightarrow-4< x< 1\)

\(\Leftrightarrow-4< x< -1\)

Vậy...

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
NL
3 tháng 3 2020 lúc 22:55

a/ \(\Leftrightarrow\frac{2x\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}-\frac{x\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\frac{\left(x-5\right)\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}\le0\)

\(\Leftrightarrow\frac{5\left(-3x+4\right)}{\left(x-5\right)\left(x+5\right)}\le0\) \(\Rightarrow\left[{}\begin{matrix}-5< x\le\frac{4}{3}\\x>5\end{matrix}\right.\)

b/ Không rõ đề

c/

- Với \(x< -1\Rightarrow\left\{{}\begin{matrix}VT>0\\VP< 0\end{matrix}\right.\) BPT vô nghiệm

- Với \(x\ge-1\) hai vế ko âm, bình phương:

\(\Leftrightarrow\left(x+1\right)^2>\frac{\left(x-3\right)^2}{4}\)

\(\Leftrightarrow\left(2x+2\right)^2-\left(x-3\right)^2>0\)

\(\Leftrightarrow\left(x+5\right)\left(3x-1\right)>0\Rightarrow\left[{}\begin{matrix}x< -5\\x>\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow x>\frac{1}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa