Những câu hỏi liên quan
IY
Xem chi tiết
LP
Xem chi tiết
NT
31 tháng 7 2023 lúc 14:49

2:

a: Sửa đề: \(\dfrac{a^2+3}{\sqrt{a^2+2}}>2\)

\(A=\dfrac{a^2+3}{\sqrt{a^2+2}}=\dfrac{a^2+2+1}{\sqrt{a^2+2}}=\sqrt{a^2+2}+\dfrac{1}{\sqrt{a^2+2}}\)

=>\(A>=2\cdot\sqrt{\sqrt{a^2+2}\cdot\dfrac{1}{\sqrt{a^2+2}}}=2\)

A=2 thì a^2+2=1

=>a^2=-1(loại)

=>A>2 với mọi a

b: \(\Leftrightarrow\sqrt{a}+\sqrt{b}< =\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}\)

=>\(a\sqrt{a}+b\sqrt{b}>=a\sqrt{b}+b\sqrt{a}\)

=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)-\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)>=0\)

=>(căn a+căn b)(a-2*căn ab+b)>=0

=>(căn a+căn b)(căn a-căn b)^2>=0(luôn đúng)

 

Bình luận (0)
GH
31 tháng 7 2023 lúc 15:14

1

ĐK: `x>1`

PT trở thành:

\(\sqrt{\dfrac{2x-3}{x-1}}=2\\ \Leftrightarrow\dfrac{2x-3}{x-1}=2^2=4\\ \Leftrightarrow4x-4-2x+3=0\\ \Leftrightarrow2x-1=0\\ \Leftrightarrow x=\dfrac{1}{2}\left(KTM\right)\)

Vậy PT vô nghiệm.

b

ĐK: \(x\ge2\)

Đặt \(t=\sqrt{x-2}\) (\(t\ge0\))

=> \(x=t^2+2\)

PT trở thành: \(t^2+2-5t+2=0\)

\(\Leftrightarrow t^2-5t+4=0\)

nhẩm nghiệm: `a+b+c=0` (`1+(-5)+4=0`)

\(\Rightarrow\left\{{}\begin{matrix}t=1\left(nhận\right)\\t=4\left(nhận\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=1\\\sqrt{x-2}=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3\left(TM\right)\\x=18\left(TM\right)\end{matrix}\right.\)

Bình luận (0)
DN
Xem chi tiết
ZZ
10 tháng 3 2020 lúc 15:28

Em dùng AM-GM nhá,em ko dùng cosi đâu ha :)

\(S=\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}\)

\(=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}=\left(\frac{x}{\sqrt{y}}+\sqrt{y}\right)+\left(\frac{y}{\sqrt{x}}+\sqrt{x}\right)-\left(\sqrt{x}+\sqrt{y}\right)\)

\(\ge2\sqrt{x}+2\sqrt{y}-\left(\sqrt{x}+\sqrt{y}\right)=\sqrt{x}+\sqrt{y}\)

Lại có:

\(S=\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}\)

\(=\frac{1-y}{\sqrt{y}}+\frac{1-x}{\sqrt{x}}=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}-\sqrt{x}-\sqrt{y}\)

Khi đó:\(2S\ge\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\ge\frac{2}{\sqrt[4]{xy}}\ge\frac{2}{\sqrt{\frac{x+y}{2}}}=2\sqrt{2}\Rightarrow S\ge\sqrt{2}\)

Dấu "=" xảy ra tại x=y=1/2

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết
TK
11 tháng 1 2022 lúc 19:33
Not biếtmdnhdhd
Bình luận (0)
 Khách vãng lai đã xóa
TM
11 tháng 1 2022 lúc 20:33

Hummmm

Bình luận (0)
 Khách vãng lai đã xóa
HT
12 tháng 1 2022 lúc 19:48

Dạ em không biết ạ,tại vì em mới học lớp 4 ạ,em xin lỗi ạ

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
NN
2 tháng 12 2017 lúc 11:11

ĐK : \(\orbr{\begin{cases}x>0\\x< -1\end{cases}}\)

Đặt \(\sqrt{\frac{x+1}{x}}=t>0\)

\(bpt\Leftrightarrow\frac{1}{t^2}-2t>3\Leftrightarrow2t^3+3t^2-1< 0\Leftrightarrow\left(2t-1\right)\left(t+1\right)^2< 0\Leftrightarrow2t-1< 0\)(do \(\left(t+1\right)^2>0\))

       \(\Leftrightarrow t< \frac{1}{2}hay\sqrt{\frac{x+1}{x}}< \frac{1}{2}\Rightarrow\frac{x+1}{x}< \frac{1}{4}\)

Với x >0, ta có: \(\frac{x+1}{x}< \frac{1}{4}\Leftrightarrow4\left(x+1\right)< 1\Leftrightarrow x< -\frac{3}{4}\left(trái.với.gt:x>0\right)\)

Với x<-1 ta có: \(\frac{x+1}{x}< \frac{1}{4}\Rightarrow4\left(x+1\right)>x\Rightarrow x>-\frac{3}{4}\Rightarrow-\frac{3}{4}< x< -1\)

Vậy nghiệm của hệ phương trình là: \(-\frac{3}{4}< x< -1\)

Bình luận (0)
LT
Xem chi tiết
AH
22 tháng 7 2021 lúc 11:24

Lời giải:
ĐK: $x,y,z\geq 0$

Áp dụng BĐT Cô-si:

\(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\geq 3\sqrt[3]{\frac{xyz}{(x+1)(y+1)(z+1)}}\)

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\geq 3\sqrt[3]{\frac{1}{(x+1)(y+1)(z+1)}}\)

Cộng theo vế và thu gọn:

\(3\geq 3.\frac{\sqrt[3]{xyz}+1}{\sqrt[3]{(x+1)(y+1)(z+1)}}\Leftrightarrow (x+1)(y+1)(z+1)\geq (1+\sqrt[3]{xyz})^3\)

Dấu "=" xảy ra khi $x=y=z$

Thay vào pt $(1)$ thì suy ra $x=y=z=1$

Bình luận (0)