giải hệ pt x+y+z+1/x+1/y+1/z=51/4 và x^2+y^2+z^2+1/x^2+1/y^2+1/z^2=771/16
giải hệ pt \(\int_{x^2+y^2+z^2+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{771}{16}}^{x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{51}{4}}\)
Giải hệ phương trình:
a)\(\hept{\begin{cases}x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{51}{4}\\x^2+y^2+z^2+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{771}{16}\end{cases}}\)
b)\(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\x^2+y^2=6\end{cases}}\)
a) ĐK: x, y, z khác 0
\(\hept{\begin{cases}\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+\left(z+\frac{1}{z}\right)=\frac{51}{4}\\\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(z+\frac{1}{z}\right)^2=\frac{867}{16}\end{cases}}\)
\(x+\frac{1}{x}=a;y+\frac{1}{y}=b;z+\frac{1}{z}=c\)
Ta có hệ >:
\(\hept{\begin{cases}a+b+c=\frac{867}{4}\\a^2+b^2+c^2=\frac{867}{16}\end{cases}}\)
Ta có: \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{867}{16}\) với mọi a, b,c
"=" xảy ra khi và chỉ khi a=b=c
Hay \(x+\frac{1}{x}=y+\frac{1}{y}=z+\frac{1}{z}=\frac{17}{4}\) giải ra tìm x, y, z
b) Hệ đối xứng:
\(\hept{\begin{cases}\left(x+y\right)+xy=2+3\sqrt{2}\\\left(x+y\right)^2-2xy=6\end{cases}}\)
Đặt x+y=S, xy=P
Ta có hệ :
\(\hept{\begin{cases}S+P=2+3\sqrt{2}\\S^2-2P=6\end{cases}}\)
=> \(\hept{\begin{cases}P=2+3\sqrt{2}-S\\S^2-2\left(2+3\sqrt{2}-S\right)=6\end{cases}}\)
Tự giải tìm S, P
=> x,y
tìm các số thực thỏa mãn
\(x+y+z\)\(+\)\(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}\)=\(\frac{51}{4}\)và
\(x^2+y^2+z^2+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{771}{16}\)
đặt \(\hept{\begin{cases}x+\frac{1}{x}=a\\y+\frac{1}{y}=b\\z+\frac{1}{z}=c\end{cases}}\)=> \(\hept{\begin{cases}x^2+\frac{1}{x^2}=a^2-2\\y^2+\frac{1}{y^2}=b^2-2\\z^2+\frac{1}{z^2}=c^2-2\end{cases}}\)
thay vào đề ta đc: \(\hept{\begin{cases}a+b+c=\frac{51}{4}\\a^2+b^2+c^2-6=\frac{771}{16}=>a^2+b^2+c^2=\frac{867}{16}\end{cases}}\)
mình chưa học giải hpt nên đến đây k biết lm đc nữa k
=))
tìm mối quan hệ giữa hai kết quả rồi bất đẳng thức
giải hệ phương trình sau
\(\hept{\begin{cases}x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{51}{4}\\x^2+y^2+z^2+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{774}{16}\end{cases}}\)
1/ giải pt, và hệ sau:
a/ √(x-2) + √(10-x) = x^2 -12x +40
b/ hệ:#1/x + 1/y + 1/z =2
#2/xy - 1/z^2 = 4
2/ tìm các số x, y, z thỏa hệ:
#1/x +16/y +9/z = 4
#x+y+z =< 16
3/ Tìm GTLN và GTNN của biển thức:
A= 3√(x-1) + 4√(5-x)
I. Giải pt: \(x^2-4x-2\sqrt{2x-1}+1=0\)
II.
Giải hệ phương trình 1. (x - y)^2 - (x - y) = 6 và 2(x^2 + y^2) = 5xy
Giải hệ phương trình 2:
13) xy - 2x - y + 2 = 0; 3x + y = 8
14) (x + y)^2 - 4(x + y) = 12; (x - y)^2 - 2(x - y) = 3
15) 3/x - 1/y = 7; 2/x - 1/y = 8
16) 1/x + 1/y = 16; 1/y + 1/z = 20; 1/z + 1/x = 18
17) \(\left\{{}\begin{matrix}x+\dfrac{1}{y}=2\\y\dfrac{1}{z}=2\\z+\dfrac{1}{x}=2\end{matrix}\right.\)
18) xy/x + y = 8/3; yz/y + z = 12/5; zx/x + z = 24/7
19) \(\left\{{}\begin{matrix}\dfrac{4}{z-1}+2x=7\\5x-3y=3\\\dfrac{2}{z-1}+y=4,5\end{matrix}\right.\)
20) x^2 + xy + xz = 2; y^2 + yz + xy = 3; z^2 + xz + yz = 47
20) 3xy - x - y = 3; 3yz - y - z = 13; 3zx - z- x = 5
III.
Bài 1, Cho phương trình: x^2 -(m-1)*x-m^2+m-2=0
1, Tìm m để pt có nghiệm x=1
2, Giải pt khi m=2
Bài 2: Giải hệ 3*x+ 4*y =7 và 4*x- y=3
IV. Hai tổ học sinh cũng là một công việc thì sau 1 giờ 30 phút sẽ xong, nếu tổ 1 làm 20 phút và tổ 2 làm 15 phút được 1/5 công việc. Hỏi mỗi tổ làm riêng xong việc trong bao lâu?
III.
Bài 1:
1/ pt có nghiệm x = 1
<=> \(1-m+1-m^2+m-2=0\Leftrightarrow-m^2=0\Leftrightarrow m=0\)
b/ khi m = 2
pt <=> \(x^2-x-4+2-2=0\)
<=> \(x^2-x-4=0\)
Có: \(\Delta=1-4\cdot\left(-4\right)=17\)
\(\Rightarrow\left[{}\begin{matrix}x_1=\dfrac{1+\sqrt{17}}{2}\\x_2=\dfrac{1-\sqrt{17}}{2}\end{matrix}\right.\)
Bài 2:
\(\left\{{}\begin{matrix}3x+4y=7\\4x-y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+4y=7\\y=4x-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+4\left(4x-3\right)=7\\y=4x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}19x=19\\y=4x-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=4\cdot1-3=1\end{matrix}\right.\)
Vậy (x;y) = (1;1)
Giải hệ PT \(\left\{{}\begin{matrix}x+y+z=1\\x^2+y^2+z^2=1\\x^3+y^3+z^3=1\end{matrix}\right.\)
(x + y + z)2 = x2 + y2 + z2 + 2(xy + yz +zx) = 1
⇔ xy + yz + zx = 0
(x + y + z)3 = x3 + y3 + z3 + 3(x + y)(y + z)(z + x) = 1
⇔ Trong 3 số x, y, z có hai số đối nhau. Giả sử hai số đó là x, y
⇔ xy + z(x + y)=0
⇔ x = y = 0; z = 1
Vậy (x;y;z)=(0;0;1) và các hoán vị.
a) Cho x,y,z thỏa mãn x+y+z+xy+yz+zx=6. Tìm Min \(P=x^2+y^2+z^2\)
giải hệ pt : 1) \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x}}+\sqrt{2-\dfrac{1}{y}}=2\\\dfrac{1}{\sqrt{y}}+\sqrt{2-\dfrac{1}{x}}=2\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}x^2+xy+y^2=7\\x^4+x^2y^2+y^4=21\end{matrix}\right.\)
1. Với mọi số thực x;y;z ta có:
\(x^2+y^2+z^2+\dfrac{1}{2}\left(x^2+1\right)+\dfrac{1}{2}\left(y^2+1\right)+\dfrac{1}{2}\left(z^2+1\right)\ge xy+yz+zx+x+y+z\)
\(\Leftrightarrow\dfrac{3}{2}P+\dfrac{3}{2}\ge6\)
\(\Rightarrow P\ge3\)
\(P_{min}=3\) khi \(x=y=z=1\)
1.1
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x}}=a>0\\\dfrac{1}{\sqrt{y}}=b>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+\sqrt{2-b^2}=2\\b+\sqrt{2-a^2}=2\end{matrix}\right.\)
\(\Rightarrow a-b+\sqrt{2-b^2}-\sqrt{2-a^2}=0\)
\(\Leftrightarrow a-b+\dfrac{\left(a-b\right)\left(a+b\right)}{\sqrt{2-b^2}+\sqrt{2-a^2}}=0\)
\(\Leftrightarrow a=b\Leftrightarrow x=y\)
Thay vào pt đầu:
\(a+\sqrt{2-a^2}=2\Rightarrow\sqrt{2-a^2}=2-a\) (\(a\le2\))
\(\Leftrightarrow2-a^2=4-4a+a^2\Leftrightarrow2a^2-4a+2=0\)
\(\Rightarrow a=1\Rightarrow x=y=1\)
2.
\(\left\{{}\begin{matrix}x^2+xy+y^2=7\\\left(x^2+y^2\right)^2-x^2y^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=7\\\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=7\\x^2-xy+y^2=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x^2+3xy+3y^2=21\\7x^2-7xy+7y^2=21\end{matrix}\right.\)
\(\Rightarrow4x^2-10xy+4y^2=0\)
\(\Leftrightarrow2\left(2x-y\right)\left(x-2y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=2x\\y=\dfrac{1}{2}x\end{matrix}\right.\)
Thế vào pt đầu
...
giải pt sau
a,x+y+4=2\(\sqrt{x}\)+4\(\sqrt{y-1}\)
b,\(\sqrt{x}\)+\(\sqrt{y-1}\)+\(\sqrt{z-2}\)=\(\dfrac{1}{2}\)(x+y+z)
Lời giải:
a/ ĐKXĐ: $x\geq 0; y\geq 1$
PT $\Leftrightarrow (x-2\sqrt{x}+1)+[(y-1)-4\sqrt{y-1}+4]=0$
$\Leftrightarrow (\sqrt{x}-1)^2+(\sqrt{y-1}-2)^2=0$
Vì $(\sqrt{x}-1)^2\geq 0; (\sqrt{y-1}-2)^2\geq 0$ với mọi $x,y$ thuộc đkxđ
Do đó để tổng của chúng bằng $0$ thì:
$\sqrt{x}-1=\sqrt{y-1}-2=0$
$\Leftrightarrow x=1; y=5$
b. ĐKXĐ: $x\geq 0; y\geq 1; z\geq 2$
PT $\Leftrightarrow 2\sqrt{x}+2\sqrt{y-1}+2\sqrt{z-2}=x+y+z$
$\Leftrightarrow (x-2\sqrt{x}+1)+[(y-1)-2\sqrt{y-1}+1]+[(z-2)-2\sqrt{z-2}+1]=0$
$\Leftrightarrow (\sqrt{x}-1)^2+(\sqrt{y-1}-1)^2+(\sqrt{z-2}-1)^2=0$
$\Rightarrow \sqrt{x}-1=\sqrt{y-1}-1=\sqrt{z-2}-1=0$
$\Leftrightarrow x=1; y=2; z=3$