Rút gọn biểu thức
A = 1/2 + 1/2^2 + 1/2^3 +.......+1/2^100
rút gọn biểu thức
a)A= (2x - 3)^2 - (2x + 3)^2
b)B= (x +1)^2 -2 (2x-1) (1+ x) +4x^2 - 4x + 1
`@` `\text {Ans}`
`\downarrow`
`A= (2x - 3)^2 - (2x + 3)^2`
`= [(2x - 3) - (2x + 3)]*[(2x - 3) + (2x + 3)]`
`= (2x - 3 - 2x - 3) * (2x - 3 + 2x + 3)`
`= -6 * 4x`
`= -24x`
`A=(2x-3)^2-(2x+3)^2`
`A=(2x-3-2x-3)(2x-3+2x+3)`
`A=-6.4x=-24x`
b: B=(x+1)^2-2(2x-1)(x+1)+4x^2-4x+1
=(x+1)^2-2(2x-1)(x+1)+(2x-1)^2
=(x+1-2x+1)^2
=(-x+2)^2=x^2-4x+4
Rút gọn biểu thức
A= \(2\sqrt{27}-\sqrt{\left(1-\sqrt{3}\right)^2}+\dfrac{1}{2-\sqrt{3}}\)
Help me
\(A=2\sqrt{27}-\sqrt{\left(1-\sqrt{3}\right)^2}+\dfrac{1}{2-\sqrt{3}}\\ =2.3\sqrt{3}-\left|1-\sqrt{3}\right|+\dfrac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\\ =6\sqrt{3}-\left(-1+\sqrt{3}\right)+\dfrac{2+\sqrt{3}}{2^2-\sqrt{3^2}}\\ =6\sqrt{3}+1-\sqrt{3}+2+\sqrt{3}\\ =6\sqrt{3}+3\)
\(=6\sqrt{3}-\sqrt{3}+1+2+\sqrt{3}=6\sqrt{3}+3\)
rút gọn biểu thức
a) √50- √18+ √2
b) \(\dfrac{1}{\sqrt{3}+\sqrt{2}}+\dfrac{1}{\sqrt{3}-\sqrt{2}}\)
\(a,=5\sqrt{2}-3\sqrt{2}+\sqrt{2}=3\sqrt{2}\\ b,=\dfrac{\sqrt{3}-\sqrt{2}+\sqrt{3}+\sqrt{2}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{3}-\sqrt{2}\right)}=\dfrac{2\sqrt{3}}{3-2}=2\sqrt{3}\)
rút gọn các biểu thức
a) (x+1)2-(x-1)2-3(x+1)(x-1)
b) 5(x+2)(x-2) -1/2(6-8x)2+17
a) Ta có: \(\left(x+1\right)^2-\left(x-1\right)^2-3\left(x+1\right)\left(x-1\right)\)
\(=x^2+2x+1-x^2+2x-1-3\left(x^2-1\right)\)
\(=4x-3x^2+3\)
\(=-3x^2+4x+3\)
b) Ta có: \(5\left(x+2\right)\left(x-2\right)-\dfrac{1}{2}\left(6-8x\right)^2+17\)
\(=5\left(x^2-4\right)-\dfrac{1}{2}\left(64x^2-96x+36\right)+17\)
\(=5x^2-20-32x^2+48x-16+17\)
\(=-27x^2+48x-19\)
Rút gọn biểu thức
a) (x + 2)2 + (x – 2)2
b) (x – 3)(x + 3) – (x – 3)(x + 1)
a) đã rút gọn
b) (x-3)(x+3)-(x-3)(x+1)
= (x-3)(x+3-x-1)
= (x-3)2
bài 1 : Rút gọn biểu thức
a) 3x.(x-2)-5x(1-x)-8(x^2-3)
b) (7x-3) (2x+1) - (5x-2) (x+4)-9x^2 + 17x
\(a,3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)
\(=3x^2-6x-5x+5x^2-8x^2+24\)
\(=\left(3x^2+5x^2-8x^2\right)+\left(-6x-5x\right)+24\)
\(=0-11x+24\)
\(=-11x+24\)
\(b,\left(7x-3\right)\left(2x+1\right)-\left(5x-2\right)\left(x+4\right)-9x^2+17x\)
\(=14x^2+7x-6x-3-5x^2-20x+2x+8-9x^2+17x\)
\(=\left(14x^2-5x^2-9x^2\right)+\left(7x-6x-20x+2x+17x\right)+\left(-3+8\right)\)
\(=0+0+5\)
\(=5\)
rút gọn biểu thức
A= (\(\left(\dfrac{1-\sqrt{2}}{1+\sqrt{2}}-\dfrac{1+\sqrt{2}}{1-\sqrt{2}}\right)\):√72
\(A=\left(\dfrac{-\left(\sqrt{2}-1\right)}{\sqrt{2}+1}+\dfrac{\sqrt{2}+1}{\sqrt{2}-1}\right)\cdot\dfrac{1}{6\sqrt{2}}\)
\(=\dfrac{-\left(3-2\sqrt{2}\right)+3+2\sqrt{2}}{1}\cdot\dfrac{1}{6\sqrt{2}}\)
\(=\dfrac{-3+2\sqrt{2}+3+2\sqrt{2}}{6\sqrt{2}}=\dfrac{2}{3}\)
rút gọn biểu thức
A= \(\left(\dfrac{1-\sqrt{2}}{1+\sqrt{2}}-\dfrac{1+\sqrt{2}}{1-\sqrt{2}}\right):\sqrt{72}\)
\(B=\left(\dfrac{3-2\sqrt{2}-3-2\sqrt{2}}{-1}\right):6\sqrt{2}=\dfrac{4\sqrt{2}}{6\sqrt{2}}=\dfrac{2}{3}\)
rút gọn biểu thức
A=(5a-5)^2+10(a-3)(1+a)(3a)
\(A=\left(5a-5\right)^2+10\left(a-3\right)\left(1+a\right).3a\)
\(A=25a^2-50a+25+30a\left(a-3+a^2-3a\right)\)
\(A=25a^2-50a+25+30a^2-90a+30a^3-90a^2\)
\(A=30a^3-35a^2-140a+25\)
Ta có: \(A=\left(5a-5\right)^2+10\left(a-3\right)\left(a+1\right)\cdot3a\)
\(=25a^2-50a+25+30a\left(a^2-2a-3\right)\)
\(=25a^2-50a+25+30a^3-60a^2-90a\)
\(=30a^3-35a^2-140a+25\)
Rút gọn biểu thức
a) A= {[(x√x)-1]\[(√x)-1]+√x}{[(x√x)+1]/[(√x)+1]-√x}
b) B={[ 3/x-(√x)-2] +1/[(√x)+1]}.[(√x)-2]
a) \(A=\left(\dfrac{x\sqrt{x}-1}{\sqrt{x}-1}+\sqrt{x}\right)\left(\dfrac{x\sqrt{x}+1}{\sqrt{x}+1}-\sqrt{x}\right)\)
\(A=\left[\dfrac{\left(\sqrt{x}\right)^3-1^3}{\sqrt{x}-1}+\sqrt{x}\right]\left[\dfrac{\left(\sqrt{x}\right)^3+1^3}{\sqrt{x}+1}-\sqrt{x}\right]\)
\(A=\left[\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}-1}+\sqrt{x}\right]\left[\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}+1}-\sqrt{x}\right]\)
\(A=\left(x+\sqrt{x}+1+\sqrt{x}\right)\left(x-\sqrt{x}+1-\sqrt{x}\right)\)
\(A=\left(x+2\sqrt{x}+1\right)\left(x-2\sqrt{x}+1\right)\)
\(A=\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)^2\)
\(A=\left[\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\right]^2\)
\(A=\left(x-1\right)^2\)
\(A=x^2+2x+1\)