Những câu hỏi liên quan
TT
Xem chi tiết
H24
Xem chi tiết
NT
2 tháng 10 2021 lúc 23:14

Bài 1:

Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)

\(=2n^3+2n^2-2n^3-2n^2+6n\)

\(=6n⋮6\)

Bình luận (0)
LL
2 tháng 10 2021 lúc 23:17

1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)

2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)

Bình luận (0)
GN
Xem chi tiết
BL
18 tháng 6 2021 lúc 23:18

a) \(2+4+6+...+2n=n\left(n+1\right)\)       (1)

\(n=1\) ta có : \(2=1\cdot\left(1+1\right)\)  ( đúng)

Giả sử (1) đúng đến n, ta sẽ chứng minh (1) đúng với n+1

Có \(2+4+6+...+2n+2\left(n+1\right)\)

\(=n\left(n+1\right)+2\left(n+1\right)=\left(n+1\right)\left(n+2\right)\)

=> (1) đúng với n+1

Theo nguyên lý quy nạp ta có đpcm

b) sai đề nha, mình search google thì được như này =))

 \(1^3+3^3+5^3+...+\left(2n-1\right)^2=n^2\left(2n^2-1\right)\)     (2)

\(n=1\) ta có : \(1^3=1^2\cdot\left(2-1\right)\)   (đúng) 

giả sử (2) đúng đến n, tức là \(1^3+3^3+...+\left(2n-1\right)^3=n^2\left(2n^2-1\right)\)

Ta c/m (2) đúng với n+1

Có \(1^3+3^3+...+\left(2n+1\right)^3=n^2\left(2n^2-1\right)+\left(2n+1\right)^3\)

\(=2n^4+8n^3+11n^2+6n+1\)

\(=\left(n^2+2n+1\right)\left(2n^2+4n+1\right)\)

\(=\left(n+1\right)^2\left[2\left(n+1\right)^2-1\right]\)   => (2) đúng với n+1

Theo nguyên lý quy nạp ta có đpcm

 

Bình luận (0)
LI
Xem chi tiết
ML
6 tháng 5 2016 lúc 13:53

S=\(^{1^2}\)+\(^{2^2}\)+\(^{3^2}\)+....+ \(^{n^2}\)

S=1+ 2.(1+1) + 3.(2+1) +.....+ n(n-1 +1)

S=1 + 1.2 +2 + 2.3 + 3 +.......+ (n-1).n + n

S= (1 + 2 +3 +....+n) + (1.2 + 2.3 + 3.4 + ......+ (n-1)n )

S= \(\frac{n\left(n+1\right)}{2}\)    +    \(\frac{n\left(n+1\right)\left(n-1\right)}{3}\)

S=  \(\frac{3n\left(n+1\right)+2n\left(n+1\right)\left(n-1\right)}{6}\)

S= \(\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)

Bình luận (2)
DT
16 tháng 1 2022 lúc 0:51

Thay n=1,ta dc VT(1)=Vp(1).Mệnh đề đúng với n=1

Giả sử n=k thỏa mãn mênh đề (1)

1^2+2^2+3^2+…+k^2= k(k+1)(2k+1)/6

Xét n=k+1,thay vào (1) ta được

1^2+2^2+…+k^2+(k+1)^2= (k+1)(k+2)(2k+2)/6

=> k(k+1)(2k+1)/6+(k+1)^2= (k+1)(k+2)(2k+2)/6

=> mệnh đề đúng với n=k+1

Theo phương pháp quy nạp toán học =>1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6

Bình luận (0)
TT
Xem chi tiết
H24
2 tháng 3 2018 lúc 19:19

\(1) VP= \frac{1}{n}-\frac{1}{n+1}\)\(= \frac{n+1}{n(n+1)}-\frac{n}{n(n+1)}\)\(= \frac{n+1-n}{n(n+1)}\)\(= \frac{1}{n(n+1)}\)\(= VT\)

2) \(VP= \frac{1}{n+1}-\frac{1}{(n+1)(n+2)}= \frac{(n+2)}{n(n+1)(n+2)}-\frac{n}{n(n+1)(n+2)}\)\(= \frac{n+2-n}{n(n+1)(n+2)}= \frac{2}{n(n+1)(n+2)}=VT\)

3) \(VP= \frac{1}{n(n+1)(n+2)}-\frac{1}{(n+1)(n+2)(n+3)}=\frac{n+3}{n(n+1)(n+2)(n+3)}-\frac{n}{n(n+1)(n+2)(n+3)}\)\(= \frac{n+3-n}{n(n+1)(n+2)(n+3)}=\frac{3}{n(n+1)(n+2)(n+3)(n+4)}=VT\)

Những ý sau làm tương tự, thế mà chẳng thèm mở mồm ra hỏi bạn :))

Bình luận (0)
H24
2 tháng 3 2018 lúc 21:44

chị thương ơi gửi em câu 6,7

Bình luận (0)
H24
20 tháng 3 2018 lúc 20:56

chị thương ơi gửi em đề bài câu 9,10 toán bài 2

Bình luận (0)
ND
Xem chi tiết
ND
8 tháng 7 2019 lúc 21:02

mọi người giúp mình vs

Bình luận (0)
TP
8 tháng 7 2019 lúc 21:17

\(A=2n^2\left(n+1\right)-2n\left(n^2+n+3\right)\)

\(A=2n\left[n\left(n+1\right)-\left(n^2+n+3\right)\right]\)

\(A=2n\left(n^2+n-n^2-n-3\right)\)

\(A=2n\cdot\left(-3\right)\)

\(A=-6n⋮6\)(đpcm)

Bình luận (0)
RM
Xem chi tiết
H24
18 tháng 7 2018 lúc 21:08

a) 2n^3 + 2n^2 - 2n^3 - 2n^2 + 6n = 6n chia hết 6

b) 3n - 2n^2 - ( n + 4n^2 - 1 - 4n ) - 1 

= 3n - 2n^2 - n - 4n^2 + 1 + 4n -1

= 6n - 6n^2 chia hết 6

c) m^3 + 8 - m^3 + m^2 - 9 - m^2 - 18

= - 19

Bình luận (0)
KT
18 tháng 7 2018 lúc 21:09

Bài 1:

\(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)

\(=2n\left(n^2+n-n^2-n+3\right)\)

\(=6n\)\(⋮\)\(6\)
Bài 2:

\(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1\)

\(=3n-2n^2-\left(n+4n^2-1-4n\right)-1\)

\(=6n-6n^2=6\left(n-n^2\right)\)\(⋮\)\(6\)

Bài 3:

\(\left(m^2-2m+4\right)\left(m+2\right)-m^3+\left(m+3\right)\left(m-3\right)-m^2-18\)

\(=m^3+8-m^3+m^2-9-m^2-18\)

\(=-19\)

\(\Rightarrow\)đpcm

Bình luận (0)
TA
18 tháng 7 2018 lúc 21:12

a,  <=> 2n[ n(n+1)-n2-n+3)

<=> 2n( n2+n-n2-n+3)

<=> 6n chia hết cho 6 với mọi n nguyên

b, <=> 3n-2n2-(n+4n2-1-4n) -1

<=> 3n-2n2-n-4n2+1+4n-n-1

<=> 6n-6n2

<=> 6(n-n2)  chiiaia hhehethet cchchocho 6

c ,<=> m3-23-m3+m2-32-m2-18

<=>-35 => ko phụ thuộc vào biến

Bình luận (0)
HD
Xem chi tiết
NK
Xem chi tiết