Những câu hỏi liên quan
TV
Xem chi tiết
DG
Xem chi tiết
AH
8 tháng 5 2018 lúc 17:33

Lời giải:

a) Ta thấy:

\(\Delta'=(m+1)^2-2m=m^2+1\geq 1>0, \forall m\in\mathbb{R}\)

Do đó pt luôn có hai nghiệm phân biệt với mọi $m$

b) Áp dụng định lý Viete của pt bậc 2 ta có:

\(\left\{\begin{matrix} x_1+x_2=2(m+1)\\ x_1x_2=2m\end{matrix}\right.\)

Do đó: \(x_1+x_2-x_1x_2=2(m+1)-2m=2\) là một giá trị không phụ thuộc vào $m$

Ta có đpcm.

Bình luận (0)
NS
Xem chi tiết
HP
4 tháng 4 2021 lúc 8:13

TH1: \(m=2\)

\(pt\Leftrightarrow-4x+5=0\Leftrightarrow x=\dfrac{5}{4}\)

\(\Rightarrow m=2\) không thỏa mãn yêu cầu bài toán

TH2: \(m\ne2\)

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta'=m^2-\left(m-2\right)\left(m+3\right)>0\\\dfrac{2m}{m-2}>0\\\dfrac{m+3}{m-2}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6-m>0\\\dfrac{2m}{m-2}>0\\\dfrac{m+3}{m-2}>0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m< -3\\2< m< 6\end{matrix}\right.\)

Vậy \(m\in\left(-\infty;-3\right)\cup\left(2;6\right)\)

Bình luận (0)
DH
Xem chi tiết
VD
Xem chi tiết
NL
9 tháng 4 2019 lúc 21:35

\(x^3-ax^2-2x+2a=0\Leftrightarrow x^2\left(x-a\right)-2\left(x-a\right)=0\)

\(\Leftrightarrow\left(x^2-2\right)\left(x-a\right)=0\) \(\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\\x=a\end{matrix}\right.\)

Để pt có 3 nghiệm pb \(\Leftrightarrow a\ne\pm\sqrt{2}\)

TH1: \(a=\frac{\sqrt{2}-\sqrt{2}}{2}\Rightarrow a=0\)

TH2: \(\sqrt{2}=\frac{a-\sqrt{2}}{2}\Rightarrow a=3\sqrt{2}\)

TH3: \(-\sqrt{2}=\frac{a+\sqrt{2}}{2}\Rightarrow a=-3\sqrt{2}\)

Vậy \(a=\left\{0;\pm3\sqrt{2}\right\}\)

Bình luận (0)
TT
Xem chi tiết
TC
5 tháng 1 2022 lúc 20:33

PT có 2 nghiệm phân biệt

\(\Leftrightarrow\text{Δ}>0\Leftrightarrow\left(2m\right)^2-4.\left(m+1\right)\left(m-1\right)>0\) 

\(\Leftrightarrow4m^2-4\left(m^2-1\right)>0\Leftrightarrow4>0\)(luôn đúng)

Vậy PT luôn có 2 nghiệm phân biệt

Theo hệ thức Viét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{2m}{m+1}\\x_1.x_2=\dfrac{m-1}{m+1}\end{matrix}\right.\)

Mà theo GT thì ta có:

\(x_1^2+x_2^2=5\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=5\)

\(\Leftrightarrow\left(\dfrac{-2m}{m+1}\right)^2-2.\dfrac{m-1}{m+1}=5\)

\(\Leftrightarrow\dfrac{4m^2}{\left(m+1\right)^2}-\dfrac{2\left(m-1\right)}{m+1}=5\)

\(\Leftrightarrow\dfrac{1}{m+1}\left[\dfrac{4m^2}{m+1}-2\left(m-1\right)\right]=5\)

\(\Leftrightarrow\dfrac{2m^2+2}{m^2+2m+1}=5\)

\(\Leftrightarrow2m^2+2=5m^2+10m+5\)

\(\Leftrightarrow3m^2+10m+3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-\dfrac{1}{3}\\m=-3\end{matrix}\right.\)

 

 

Bình luận (0)
NB
Xem chi tiết
H24
8 tháng 5 2016 lúc 9:55

a)

xét f(x)=0

=>3x-6=0

=> 3x=6

=> x=2

vậy nghiệm của f(x) là 2

xét g(t)=0

=> -4t-8=0

=> -4t=8

=> t=-2

vậy nghiệm của g(t) là -2

b)

f(x)=1=> 3x-6=1

=> 3x=7

=> x=7/3

g(t)=1=> -4t-8=1

=> -4t=9

=> t=-9/4

Bình luận (0)
AL
1 tháng 5 2022 lúc 10:43

a)

xét f(x)=0

=>3x-6=0

=> 3x=6

=> x=2

vậy nghiệm của f(x) là 2

xét g(t)=0

=> -4t-8=0

=> -4t=8

=> t=-2

vậy nghiệm của g(t) là -2

b)

f(x)=1=> 3x-6=1

=> 3x=7

=> x=7/3

g(t)=1=> -4t-8=1

=> -4t=9

=> t=-9/4

Bình luận (0)
NS
Xem chi tiết
H24
Xem chi tiết
H24
24 tháng 4 2018 lúc 20:51

\(a,Q\left(\dfrac{1}{2}\right)=-3.\left(\dfrac{1}{2}\right)^2+\dfrac{1}{2}-2\)

\(Q\left(\dfrac{1}{2}\right)=-3.\dfrac{1}{4}+\dfrac{1}{2}-2\)

\(Q\left(\dfrac{1}{2}\right)=-\dfrac{3}{4}+\left(-\dfrac{3}{2}\right)\)

\(Q\left(\dfrac{1}{2}\right)=-\dfrac{9}{4}\)

\(b,P\left(1\right)=-3.1^2+2.1+1\)

\(P\left(1\right)=-3.1+2+1\)

\(P\left(1\right)=-3+2+1\)

\(P\left(1\right)=0\)

​Vậy x = 1 là nghiệm của đa thức P(x)

\(c,H\left(x\right)=\left(-3x^2+2x+1\right)-\left(-3x^2+x-2\right)\)

Bình luận (0)
H24
24 tháng 4 2018 lúc 20:52

Câu c thì dễ rồi bn tự làm đi nha còn câu d thì mik chịu

Bình luận (0)