Những câu hỏi liên quan
KK
Xem chi tiết
NT
22 tháng 9 2015 lúc 12:57

BÀI 2 : áp dụng hệ thức lượng trong tam giác, ta có: AH^2=BH*CH=>AH^2= 4*9=36=>AH=căn bậc hai của 36=6

\(AB^2=BH\cdot BC=4\cdot\left(4+9\right)=52=>AB=\sqrt{52}=2\sqrt{13}\)

\(AC^2=CH\cdot BC=9\cdot13=117=>AC=\sqrt{117}=3\sqrt{13}\)

Bình luận (0)
27
Xem chi tiết
NT
26 tháng 2 2022 lúc 17:39

AC = 12 cm bạn nhé 

Theo định lí Pytago tam giác ABC vuông tại A 

\(BC=\sqrt{AC^2+AB^2}=15cm\)

Bình luận (1)
H24
Xem chi tiết
H24
13 tháng 3 2022 lúc 14:46

Xét tam giác ABC vuông tại B có:

\(AB^2+BC^2=AC^2\\ =>9^2+BC^2=15^2\\ =>BC^2=15^2-9^2=225-81=144\\ =>BC=12cm\)

Bình luận (0)
TT
13 tháng 3 2022 lúc 14:49

Xét tam giác ABC vuông tại B có:

AB2+BC2=AC2(Theo định lý Py-ta-go)

 92+ BC2= 152

   BC2   = 225-81

  BC2=  144

=>BC=12 cm

Bình luận (0)
VH
13 tháng 3 2022 lúc 14:53

Xét \(\Delta ABC\) có:

\(AB^2+BC^2=AC^2\)

\(9^2+BC^2=15^2\)

        \(BC^2=15^2-9^2\)

        \(BC^2=225-81\)

        \(BC^2=144\)

   \(\Rightarrow BC=12\)

 

Bình luận (0)
VH
Xem chi tiết
NT
19 tháng 8 2021 lúc 13:22

\(\widehat{A}=90^0\)

Bình luận (2)
TK
Xem chi tiết
H9
30 tháng 7 2023 lúc 8:54

Tam giác ABC vuông tại A áp dụng đính lý cạnh góc vuông và hình chiếu ta có::

\(AB^2=BC\cdot HB=BC\cdot\left(BC-HC\right)\)

\(\Rightarrow20^2=BC^2-BC\cdot9\)

\(\Rightarrow BC^2-9BC-400=0\)

\(\Rightarrow BC^2+16BC-25BC-400=0\)

\(\Rightarrow BC\left(BC+16\right)-25\left(BC+16\right)=0\)

\(\Rightarrow\left(BC+16\right)\left(BC-25\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}BC+16=0\\BC-25=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}BC=-16\left(ktm\right)\\BC=25\left(tm\right)\end{matrix}\right.\)

Áp dụng hệ thức đường cao và hình chiếu ta có:

\(AH^2=HC\cdot HB\Rightarrow AH=\sqrt{HC\cdot\left(BC-HC\right)}\)

\(\Rightarrow AH=\sqrt{9\cdot\left(25-9\right)}=12\left(cm\right)\)

Diện tích của tam giác ABC là:
\(S_{ABC}=\dfrac{1}{2}\cdot BC\cdot AH=\dfrac{1}{2}\cdot25\cdot12=150\left(cm^2\right)\)

Bình luận (0)
HA
Xem chi tiết
NT
2 tháng 8 2021 lúc 20:11

Bài 1: 

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên CH=BC-BH=15-5,4=9,6(cm)

b) Ta có: BH+CH=BC(H nằm giữa B và C)

nên BC=1+3=4(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)

Bình luận (0)
NL
Xem chi tiết
H24
Xem chi tiết
YA
18 tháng 2 2018 lúc 10:45

Vẽ hình ra

Bình luận (0)
PT
18 tháng 2 2018 lúc 10:57

hình đâu hả bạn???

Bình luận (0)
NM
18 tháng 2 2018 lúc 11:14

hình đâu bạn

Bình luận (0)
DH
Xem chi tiết
NC
18 tháng 9 2019 lúc 9:30

ABC912D

Ta có: BC = BD + CD = 12 + 9 =21 (cm)

 \(\Delta\)ABC vuông tại A

=> \(AB^2+AC^2=BC^2=21^2=441\)(1)

Áp dụng tính chất phân giác ta có:

\(\frac{AB}{AC}=\frac{BD}{DC}=\frac{9}{12}\)

=> \(\frac{AB^2}{AC^2}=\frac{81}{144}\)(2)

Từ (1) , (2) => \(\hept{\begin{cases}AB^2=\frac{3969}{25}\\AC^2=\frac{7056}{25}\end{cases}}\)( có rất nhiều cách để em ra kết quả này., có thể dùng tổng tỉ , hay thế ....)

=> \(\hept{\begin{cases}AB=\frac{63}{5}\\AC=\frac{84}{5}\end{cases}}\)

Bình luận (0)
NH
Xem chi tiết
GL
24 tháng 12 2016 lúc 10:58

ngu quá

Bình luận (0)