Những câu hỏi liên quan
AK
Xem chi tiết
H24
17 tháng 8 2023 lúc 15:21

loading...  

Bình luận (1)
NS
Xem chi tiết
H24
26 tháng 4 2022 lúc 12:16

\(a,=\dfrac{x+8\sqrt{x}+8-\left(\sqrt{x+2}\right)^2}{\sqrt{x}\left(\sqrt{x}+2\right)}:\dfrac{x+\sqrt{x}+3+\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x+8\sqrt{x}+8-x-4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{2\sqrt{x}+x+5}\)

\(=\dfrac{4\sqrt{x}-4}{2\sqrt{x}+x+5}\)

Vậy \(P=\dfrac{4\sqrt{x}-4}{2\sqrt{x}+x+5}\)

 

 

 

Bình luận (0)
BA
Xem chi tiết
NL
11 tháng 6 2021 lúc 23:57

Đề bài sai, bạn kiểm tra lại điều kiện \(a^2+b^2+c^2=1\)

Bình luận (0)
HN
Xem chi tiết
BA
Xem chi tiết
NL
25 tháng 12 2020 lúc 21:27

\(a^5+b^2+ab+6\ge3a^2b+6\)

\(\Rightarrow P\le\dfrac{1}{\sqrt{3}}\left(\dfrac{1}{\sqrt{a^2b+2}}+\dfrac{1}{\sqrt{b^2c+2}}+\dfrac{1}{\sqrt{c^2a+2}}\right)\le\sqrt{\dfrac{1}{a^2b+2}+\dfrac{1}{b^2c+2}+\dfrac{1}{c^2a+2}}=\sqrt{Q}\)

\(Q=\dfrac{c}{a+2c}+\dfrac{a}{b+2a}+\dfrac{b}{c+2b}=\dfrac{1}{2}\left(1-\dfrac{a}{a+2c}+1-\dfrac{b}{b+2a}+1-\dfrac{c}{c+2b}\right)\)

\(Q=\dfrac{3}{2}-\dfrac{1}{2}\left(\dfrac{a^2}{a^2+2ac}+\dfrac{b^2}{b^2+2ab}+\dfrac{c^2}{c^2+2bc}\right)\)

\(Q\le\dfrac{3}{2}-\dfrac{1}{2}\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=1\)

\(\Rightarrow P\le\sqrt{1}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)
1G
Xem chi tiết
NL
9 tháng 8 2021 lúc 15:08

Ta có:

\(\left(\sqrt{a}.\dfrac{\sqrt{a}}{\sqrt{4a+3bc}}+\sqrt{b}\dfrac{\sqrt{b}}{\sqrt{4b+3ac}}+\sqrt{c}\dfrac{\sqrt{c}}{\sqrt{4c+3ab}}\right)^2\le\left(a+b+c\right)\left(\dfrac{a}{4a+3bc}+\dfrac{b}{4b+3ac}+\dfrac{c}{4c+3ab}\right)\)

\(=2\left(\dfrac{a}{4a+3bc}+\dfrac{b}{4b+3ac}+\dfrac{c}{4c+3ab}\right)\)

Nên ta chỉ cần chứng minh:

\(\dfrac{a}{4a+3bc}+\dfrac{b}{4b+3ac}+\dfrac{c}{4c+3ab}\le\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{4a}{4a+3bc}+\dfrac{4b}{4b+3ac}+\dfrac{4c}{4c+3ab}\le2\)

\(\Leftrightarrow\dfrac{3bc}{4a+3bc}+\dfrac{3ac}{4b+3ac}+\dfrac{3ab}{4c+3ab}\ge1\)

\(\Leftrightarrow\dfrac{bc}{4a+3bc}+\dfrac{ac}{4b+3ac}+\dfrac{ab}{4c+3ab}\ge\dfrac{1}{3}\)

Thật vậy, ta có:

\(VT=\dfrac{\left(bc\right)^2}{4abc+3\left(bc\right)^2}+\dfrac{\left(ca\right)^2}{4abc+3\left(ac\right)^2}+\dfrac{\left(ab\right)^2}{4abc+3\left(ab\right)^2}\)

\(VT\ge\dfrac{\left(ab+bc+ca\right)^2}{3\left(ab\right)^2+3\left(bc\right)^2+3\left(ca\right)^2+12abc}=\dfrac{\left(ab+bc+ca\right)^2}{3\left(ab\right)^2+3\left(bc\right)^2+3\left(ca\right)^2+6abc\left(a+b+c\right)}\)

\(VT\ge\dfrac{\left(ab+bc+ca\right)^2}{3\left(ab+bc+ca\right)^2}=\dfrac{1}{3}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=...\)

Bình luận (0)
NV
Xem chi tiết
RH
30 tháng 8 2021 lúc 10:07

undefined

Bình luận (0)
NM
30 tháng 8 2021 lúc 10:09

\(VT=\sqrt{\dfrac{a^2b^2}{c\left(a+b+c\right)+ab}}+\sqrt{\dfrac{b^2c^2}{a\left(a+b+c\right)+bc}}+\sqrt{\dfrac{a^2c^2}{b\left(a+b+c\right)+ac}}\\ VT=\sqrt{\dfrac{a^2b^2}{ac+ab+bc+c^2}}+\sqrt{\dfrac{b^2c^2}{a^2+ac+ab+bc}}+\sqrt{\dfrac{a^2c^2}{ab+bc+b^2+ac}}\\ VT=\sqrt{\dfrac{a^2b^2}{\left(c+a\right)\left(b+c\right)}}+\sqrt{\dfrac{a^2c^2}{\left(b+c\right)\left(a+b\right)}}+\sqrt{\dfrac{b^2c^2}{\left(a+b\right)\left(a+c\right)}}\)

Áp dụng BĐT Cauchy-Schwarz:

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{b^2c^2}{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{bc}{a+b}+\dfrac{bc}{a+c}}{2}\\\sqrt{\dfrac{a^2c^2}{\left(a+b\right)\left(b+c\right)}}\le\dfrac{\dfrac{ca}{a+b}+\dfrac{ca}{b+c}}{2}\\\sqrt{\dfrac{a^2b^2}{\left(b+c\right)\left(a+c\right)}}\le\dfrac{\dfrac{ab}{b+c}+\dfrac{ab}{a+c}}{2}\end{matrix}\right.\)

\(\Rightarrow VT\le\dfrac{\left(\dfrac{bc}{a+b}+\dfrac{ca}{a+b}\right)+\left(\dfrac{ca}{b+c}+\dfrac{ab}{b+c}\right)+\left(\dfrac{bc}{a+c}+\dfrac{ab}{a+c}\right)}{2}\\ \Rightarrow VT\le\dfrac{a+b+c}{2}=\dfrac{2}{2}=1\)

Dấu \("="\Leftrightarrow a=b=c=\dfrac{2}{3}\)

Bình luận (0)
PN
Xem chi tiết
NL
8 tháng 8 2021 lúc 19:29

ĐKXĐ: \(x\ge1\)

\(3\sqrt[]{x-1}+m\sqrt[]{x+1}=2\sqrt[4]{\left(x-1\right)\left(x+1\right)}\)

\(\Leftrightarrow3\sqrt[]{\dfrac{x-1}{x+1}}+m=2\sqrt[4]{\dfrac{x-1}{x+1}}\)

Đặt \(\sqrt[4]{\dfrac{x-1}{x+1}}=t\Rightarrow0\le t< 1\)

\(\Rightarrow3t^2+m=2t\Leftrightarrow-3t^2+2t=m\)

Xét \(f\left(t\right)=-3t^2+2t\) trên \([0;1)\)

\(f'\left(t\right)=-6t+2=0\Rightarrow t=\dfrac{1}{3}\)

\(f\left(0\right)=0;f\left(\dfrac{1}{3}\right)=\dfrac{1}{3};f\left(1\right)=-1\)

\(\Rightarrow-1< f\left(t\right)\le\dfrac{1}{3}\)

\(\Rightarrow-1< m\le\dfrac{1}{3}\)

Bình luận (0)
NT
8 tháng 8 2021 lúc 19:47

Chọn C

Bình luận (0)
NT
Xem chi tiết