giúp mình với, cảm ơn nhiều
Cho a>b, chứng tỏ: 3- 2a< 4- 2b
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1. Chứng tỏ :
a). (a - b + c) - (a + c) = -b
b). (a + b) - (b - a) + c = 2a + c
c). - (a + b - c) + (a - b - c) = -2b
d). a(b+ c) - a(b + d) = a(c - d)
e). a(b - c) + a(d + c) = a(b + d)
Mong các bạn giúp mình ! Mình đang cần gấp lắm! Mình xin cảm ơn !
a, Cho a;b€N thỏa mãn: (11a+2b)chia hết cho 12.Chứng tỏ a+34b chia hết cho 12.
b, Cho a;b€N thỏa mãn: (2a+7b) chia hết cho 3.Chứng tỏ (4a+2b) chia hết cho 3.
Giúp mình nha!!!
Giả sử (4a+2b)⋮3(4a+2b)⋮3
⇒(4a+2b)+(2a+7b)⋮3⇒(4a+2b)+(2a+7b)⋮3
⇒(6a+9b)⋮3⇒(6a+9b)⋮3 (đúng)
=> Giả sử đúng
Vậy (4a+2b)⋮3
Thu gọn đa thức sau:
a) A= \(5xy - y^2 - 2xy +4xy + 3x -2y\)
b) B= \(\dfrac{1}{2}ab^2 - \dfrac{7}{8}ab^2 + \dfrac{3}{4}a^2 b - \dfrac{3}{8}a^2b - \dfrac{1}{2}ab^2\)
c) C= \(2a^2b - 8b^2 + 5a^2b + 5c^2 - 3b^2 + 4c^2\)
Giúp mình với ạ. Cảm ơn các bạn nhiều!!
a: \(A=\left(5xy-2xy+4xy\right)+3x-2y-y^2\)
\(=7xy+3x-2y-y^2\)
b: \(B=\left(\dfrac{1}{2}ab^2-\dfrac{7}{8}ab^2-\dfrac{1}{2}ab^2\right)+\left(\dfrac{3}{4}a^2b-\dfrac{3}{8}a^2b\right)\)
\(=\dfrac{-7}{8}ab^2+\dfrac{3}{8}a^2b\)
c: \(C=\left(2a^2b+5a^2b\right)+\left(-8b^2-3b^2\right)+\left(5c^2+4c^2\right)\)
\(=7a^2b-11b^2+9c^2\)
\(A=5xy-y^2-2xy+4xy+3x-2y\)
\(A=-y^2+7xy+3x-2y\)
\(B=\dfrac{1}{2}ab^2-\dfrac{7}{8}ab^2+\dfrac{3}{4}a^2b-\dfrac{3}{8}a^2b-\dfrac{1}{2}ab^2\)
\(B=\dfrac{3}{8}a^2b-\dfrac{7}{8}ab^2\)
\(C=2a^2b-8b^2+5a^2b+5c^2-3b^2+4c^2\)
\(C=7a^2b-11b^2+9c^2\)
\(A=7xy-y^2+3x-2y\)
\(B=\dfrac{3}{8}a^2b-\dfrac{7}{8}ab^2\)
\(C=7a^2b-11b^2+9c^2\)
Cho a,b,c dương ( lớn hơn 0) và \(a+b+c=3\)
chứng minh: \(\dfrac{a}{1+b^2c}+\dfrac{b}{1+c^2a}+\dfrac{c}{1+a^2b}\ge\dfrac{3}{2}\)
giúp mik với, mik cảm ơn
\(VT=\dfrac{a^2}{b+ab^2c}+\dfrac{b^2}{b+abc^2}+\dfrac{c^2}{c+a^2bc}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+abc\left(a+b+c\right)}=\dfrac{9}{3+3abc}\)
\(VT\ge\dfrac{9}{3+\dfrac{\left(a+b+c\right)^3}{9}}=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
bbaif này áp dụng Cauchy thì có đúng không thầy?
CMR với mọi số thực a,b,c ta đều có: (a+b-2c)^3 +(b+c-2a)^3 + (c+a-2b)^3 = 3(a+b-2c)(b+c-2a)(c+a-2b)
Mình đang cần gấp. Cảm ơn trước. ^-^
Đặt x=a + b - 2c
y=b+c-2a
z=c+a-2b
=>x+y+z=(a + b - 2c)+(b+c-2a)+(c+a-2b)
=>x+y+z=0
=>x+y= - z (1)
=>(x+y)^3=(-z)^3
=>x^3+y^3+3xy(x+y)=(-z)^3
=>x^3+y^3+z^3 +3xy(-z)=0 {vì x+y=-z [theo (1)]}
=>x^3+y^3+z^3 -3xyz=0
=>x^3+y^3+z^3 =3xyz
Vậy (a + b - 2c)^3 + (b + c - 2a)^3 + (c + a - 2b)^3=3(a + b - 2c) (b + c - 2a)(c + a - 2b)
a(a+2b)^3−b(2a+b)^3
ai giải iups mình với
cảm ơn
Tính giá trị biểu thức
A=(9a^5-ab^4-18a^4b+2b^5)/(3a^3b^2+ab^4-6a^2b^3-2b^5) với a/b=2/3
Bạn ơi giúp mình với nhé mình cảm ơn nhiều!!!!!!!!
\(A=\frac{9a^5-ab^4-18a^4b+2b^5}{3a^2b^2+ab^4-6a^2b^3-2b^5}\)
\(=\frac{a\left(9a^4-b^4\right)-2b\left(9a^4-b^4\right)}{ab^2\left(3a^2+b^2\right)-2b^3\left(3a^2+b^2\right)}\)
\(=\frac{\left(9a^4-b^4\right)\left(a-2b\right)}{\left(3a^2+b^2\right)\left(ab^2-2b^3\right)}\)
\(=\frac{\left(3a^2-b^2\right)\left(3a^2+b^2\right)\left(a-2b\right)}{\left(3a^2+b^2\right)b^2\left(a-2b\right)}\)
\(=\frac{3a^2-b^2}{b^2}\)
\(=3.\left(\frac{a}{b}\right)^2-1=3.\left(\frac{2}{3}\right)^2-1=\frac{1}{3}\)
Mọi người ơi giúp mình với ạ, mình cảm ơn rất nhiều
Cho hình chóp S.ABCD. Gọi M là một điểm thuộc SB, N thuộc miền trong tam giác SCD.
a) Tìm giao tuyến của (AMN) với (ABCD), (AMN) với (SCD)
b) Tìm giao tuyến của (CMN) với (SAB)
Bài 2:chứng tỏ nếu \(\frac{a}{b}=\frac{c}{d}\)
c) \(\frac{3a+2016b}{3c+2016d}=\frac{a-2b}{c-2d}\)
giải giúp với mai mình nộp rồi cảm ơn mình tick cho
Bìa này đâu cần : \(\frac{a}{b}=\frac{c}{d}\)
Ta chứng minh ngược :
\(\frac{3a+2016b}{3c+2016d}=\frac{a-2b}{c-2d}\)
\(\Rightarrow\left(3c+2016b\right)\left(c-2d\right)=\left(3c+2016d\right)\left(a-2b\right)\)
\(\Rightarrow3ac-4032bd=3ac-4032bd\)( hiển nhiên đúng )
\(\Rightarrow\frac{3a+2016b}{3c+2016d}=\frac{a-2b}{c-2d}\)( đúng )
AB = CD và thành 3a + 2016 + ab =3434
= 3c + 3434 +cd= 4354
ds ________________________