(x-1)(x-3)(x+5)(x+7)=297. tìm x
Tìm x:
(x-1).(x-3).(x+5).(x+7)=297
\(\Rightarrow\)[ (x-1)(x+5) ].[ (x-3)(x+7) ] = 297
\(\Rightarrow\)( x^2 + 4x - 5 ) . ( x^2 + 4x - 21) = 297 ( bước này mình làm tắt)
\(\Rightarrow\)(x^2 + 4x - 13 + 8) . (x^2 + 4x -13 - 8) = 297
\(\Rightarrow\)(x^2 + 4x - 13)^2 - 64 = 297
\(\Rightarrow\)(x^2 + 4x -13)^2 = 361
\(\Rightarrow\)x^2 + 4x - 13 = 19 hoặc x^ + 4x -13 = -19
phần còn lại tự bạn giải nha
(x-1)*(x-3)*(x+5)*(x+7)-297=0
\(\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)-297=0\)
\(\Leftrightarrow\)\(\left(x^2+4x-5\right)\left(x^2+4x-21\right)-297=0\)
Đặt \(x^2+4x-5=t\) ta có:
\(t\left(t-16\right)-297=0\)
\(\Leftrightarrow\)\(t^2-16t+64-361=0\)
\(\Leftrightarrow\) \(\left(t-8\right)^2-361=0\)
\(\Leftrightarrow\)\(\left(t-8-19\right)\left(t-8+19\right)=0\)
\(\Leftrightarrow\)\(\left(t-27\right)\left(t+11\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}t-27=0\\t+11=0\end{cases}}\)
Thay trở lại ta được: \(\orbr{\begin{cases}x^2+4x-32=0\\x^2+4x+6=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\left(x-4\right)\left(x+8\right)=0\\\left(x+2\right)^2+2=0\left(L\right)\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=4\\x=-8\end{cases}}\)
Vậy...
1) (x-2).(x+4)=0
2) (x-2).(x+15)=0
3) (7-x).(x+19)=0
4) -5<x<1
5) (x-3)(x-5)<0
6) 2x2-3=29
7) -6x-(-7)=25
8) 46-(x-11) = -48
1) \(\left(x-2\right)\left(x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
2) \(\left(x-2\right)\left(x+15\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+15=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-15\end{matrix}\right.\)
3) \(\left(7-x\right)\left(x+19\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}7-x=0\\x+19=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=7\\x=-19\end{matrix}\right.\)
4) \(-5< x< 1\)
\(\Rightarrow x\in\left\{-1;-3;-2;-1;0\right\}\)
5) \(\left(x-3\right)\left(x-5\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}x-3>0\\x-5< 0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x>3\\x< 5\end{matrix}\right.\)
\(\Rightarrow3< x< 5\)
6) \(2x^2-3=29\)
\(\Rightarrow2x^2=29+3\)
\(\Rightarrow2x^2=32\)
\(\Rightarrow x^2=\dfrac{32}{2}\)
\(\Rightarrow x^2=16\)
\(\Rightarrow x^2=4^2\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
7) \(-6x-\left(-7\right)=25\)
\(\Rightarrow-6x+7=25\)
\(\Rightarrow-6x=25-7\)
\(\Rightarrow-6x=18\)
\(\Rightarrow x=\dfrac{18}{-6}\)
\(\Rightarrow x=-3\)
8) \(46-\left(x-11\right)=-48\)
\(\Rightarrow x-11=48+46\)
\(\Rightarrow x-11=94\)
\(\Rightarrow x=94+11\)
\(\Rightarrow x=105\)
1: (x-2)(x+4)=0
=>x-2=0 hoặc x+4=0
=>x=2 hoặc x=-4
2: (x-2)(x+15)=0
=>x-2=0 hoặc x+15=0
=>x=2 hoặc x=-15
3: (7-x)(x+19)=0
=>7-x=0 hoặc x+19=0
=>x=7 hoặc x=-19
4: -5<x<1
=>\(x\in\left\{-4;-3;-2;-1;0\right\}\)
5: (x-3)(x-5)<0
=>x-3>0 và x-5<0
=>3<x<5
6: 2x^2-3=29
=>2x^2=32
=>x^2=16
=>x=4 hoặc x=-4
7: -6x-(-7)=25
=>-6x=25-7=18
=>x=-3
8: 46-(x-11)=-48
=>x-11=46+48=94
=>x=94+11=105
Giai pt:
(x-1)(x-3)(x+5)(x+7) = 297
Ta có:\(\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)=297\)
\(\Leftrightarrow\left(x-1\right)\left(x+5\right)\left(x-3\right)\left(x+7\right)=297\)
\(\Leftrightarrow\left(x^2+4x-5\right)\left(x^2+4x-21\right)=297\)
Đặt \(x^2+4x-5=t\) thì \(t\left(t-16\right)=297\)
\(\Leftrightarrow t^2-16t-297=0\Leftrightarrow t^2-27t+11t-297=0\)
\(\Leftrightarrow t\left(t-27\right)+11\left(t-27\right)=0\Leftrightarrow\left(t+11\right)\left(t-27\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=-11\\t=27\end{cases}}\)
Với \(t=-11\) thì \(x^2+4x-5=-11\Leftrightarrow x^2+4x+6=0\Leftrightarrow x^2+4x+4+2=0\)
\(\Leftrightarrow\left(x+2\right)^2+2=0\)(vô lí)
Với \(t=27\) thì \(x^2+4x-5=27\Leftrightarrow x^2+4x-32=0\Leftrightarrow x^2-4x+8x-32=0\)
\(\Leftrightarrow x\left(x-4\right)+8\left(x-4\right)=0\Leftrightarrow\left(x+8\right)\left(x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=-8\\x=4\end{cases}}\)
Tập nghiệm của pt \(S=\left\{-8,4\right\}\)
\(\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)=297\)
\(\Leftrightarrow\left[\left(x-1\right)\left(x+5\right)\right]\left[\left(x-3\right)\left(x+7\right)\right]=297\)
\(\Leftrightarrow\left(x^2+5x-x-5\right)\left(x^2+7x-3x-21\right)=297\)
\(\Leftrightarrow\left(x^2+4x-5\right)\left(x^2+4x-21\right)=297\)
Đặt \(x^2+4x-13=m\)
Ta có : \(\left(m+8\right)\left(m-8\right)=297\)
\(\Leftrightarrow m^2-8^2=297\)
\(\Leftrightarrow m^2=361\)
\(\Leftrightarrow m=\pm19\)
+) Với m = 19 ta có : \(x^2+4x-13=19\)
\(\Leftrightarrow x^2+4x-32=0\)
\(\Leftrightarrow\left(x^2-4x\right)+\left(8x-32\right)=0\)
\(\Leftrightarrow x\left(x-4\right)+8\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-8\end{cases}}\)
+) Với m = -19 ta có : \(x^2+4x-13=-19\)
\(\Leftrightarrow x^2+4x+6=0\)
\(\Leftrightarrow\left(x^2+4x+4\right)+2=0\)
\(\Leftrightarrow\left(x+2\right)^2+2=0\)
\(\Leftrightarrow\left(x+2\right)^2=-2\) ( vô lí )
Vậy phương trình có tập nghiệm \(S=\left\{4;-8\right\}\)
Giải phương trình
(x-1)(x-3)(x+5)(x+7)=297
\(\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)=297\)
\(\Rightarrow\left(x^2+4x-21\right)\left(x^2+4x-5\right)-297=0\)
Đặt \(t=x^2+4x-5\) ta có:
\(\left(t-16\right)t-297=0\)\(\Rightarrow t^2-16t-297=0\)
\(\Rightarrow t^2-27t+11t-297=0\)
\(\Rightarrow t\left(t-27\right)+11\left(t-27\right)=0\)
\(\Rightarrow\left(t+11\right)\left(t-27\right)=0\)\(\Rightarrow\left[\begin{matrix}t=-11\\t=27\end{matrix}\right.\)
*)Xét \(t=-11\Rightarrow x^2+4x-5=-11\)
\(\Rightarrow x^2+4x+6=0\Rightarrow\left(x+2\right)^2+2>0\left(loai\right)\)
*)Xét \(t=27\Rightarrow x^2+4x-5=27\)
\(\Rightarrow x^2+4x-32=0\Rightarrow\left(x+8\right)\left(x-4\right)=0\)\(\Rightarrow\left[\begin{matrix}x=-8\\x=4\end{matrix}\right.\)
Giải phương trình:
(x - 1)(x - 3)(x + 5)(x + 7) = 297
\(\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)=297\)
\(\Leftrightarrow\left[\left(x-1\right)\left(x+5\right)\right]\left[\left(x-3\right)\left(x+7\right)\right]=297\)
\(\Leftrightarrow\left(x^2+5x-x-5\right)\left(x^2+7x-3x-21\right)=297\)
\(\Leftrightarrow\left(x^2+4x-5\right)\left(x^2+4x-21\right)=297\) (*)
Đặt \(x^2+4x-13=y\)
Ta có phương trình (*) \(\Leftrightarrow\left(y+8\right)\left(y-8\right)=297\)
\(\Leftrightarrow y^2-64-297=0\)
\(\Leftrightarrow y^2-361=0\Leftrightarrow\left(y-19\right)\left(y+19\right)=0\)
\(\Leftrightarrow\left(x^2+4x-13-19\right)\left(x^2+4x-13+19\right)=0\)
\(\Leftrightarrow\left(x^2+4x-32\right)\left(x^2+4x+6\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+8\right)\left(x^2+4x+6\right)=0\)
Ta có: \(x^2+4x+6=\left(x^2+4x+4\right)+2=\left(x+2\right)^2+2\)
Vì \(\left(x+2\right)^2\ge0\forall x\Rightarrow\left(x+2\right)^2+2\ge2>0\forall x\)
\(\Rightarrow\) Phương trình \(x^2+4x+6\) vô nghiệm.
Vậy \(\left(x-4\right)\left(x+8\right)\left(x^2+4x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-8\end{matrix}\right.\)
Vậy phương trình trên có tập nghiệm là S = {4:-8}
(x-1)(x-3)(x+5)(x+7)=297
⇔(x-1)((x+5)(x-3)(x+7)=297
⇔(x2+4x-5)(x2-4x-21)=297
Đặt x2+4x-13=t, ta được:
(t+8)(t-8)=297
⇔t2-64=297
⇔t2-64-297=0
⇔t2-361=0
⇔(t-19)(t+19)=0
\(\left\{{}\begin{matrix}t-19=0\\t+19=0\end{matrix}\right.< =>\left\{{}\begin{matrix}t=19\\t=-19\end{matrix}\right.\)
Với t=19, ta được:
x2+4x-13=19
⇔x2+4x-13-19=0
⇔x2+4x-32=0
⇔x2+8x-4x-32=0
⇔x(x+8)-4(x+8)=0
⇔(x+8)(x-4)=0
⇔\(\left\{{}\begin{matrix}x+8=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-8\\x=4\end{matrix}\right.\)
->phương trình có tập nghiệm là S=\(\left\{-8;4\right\}\)
Với t=-19,ta được:
x2+4x-13=-19
⇔x2+4x-13+19=0
⇔x2+4x+6=0
⇔x2+4x+4+2=0
⇔(x+2)2+2=0 (vì (x+2)2≥0 với ∀ ⇒(x+2)2+2 ≥ 2 >0)
->Phương trình vô nghiệm
Kết luận : Vậy phương trình có tập nghệm là S=\(\left\{-8;4\right\}\)
Baif1 Tính nhanh
a,A=1-2-3+4+5-6-7+...+1996=1997-1998-1999+...+2009-2010 -2011+2012+2013
Bài 2 :Tìm x thuộc Z
a,17+(-17+x)=297-(12+297)
b,25-(-2+x+25)=-(10-379)+(-379-5)
Giải các phương trình sau (Đặt ẩn phụ)
d) x(x+1)(x2+x+1)=42
e) (x-1)(x-3)(x+5)(x+7)-297=0
f) x4-2x2-144x-1295=0
d: \(x\left(x+1\right)\left(x^2+x+1\right)=42\left(1\right)\)
=>\(\left(x^2+x\right)\left(x^2+x+1\right)=42\)
Đặt \(a=x^2+x\)
Phương trình (1) sẽ trở thành \(a\left(a+1\right)=42\)
=>\(a^2+a-42=0\)
=>(a+7)(a-6)=0
=>\(\left(x^2+x+7\right)\left(x^2+x-6\right)=0\)
mà \(x^2+x+7=\left(x+\dfrac{1}{2}\right)^2+\dfrac{27}{4}>0\forall x\)
nên \(x^2+x-6=0\)
=>(x+3)(x-2)=0
=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
e: \(\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)-297=0\left(2\right)\)
=>\(\left(x-1\right)\left(x+5\right)\left(x-3\right)\left(x+7\right)-297=0\)
=>\(\left(x^2+4x-5\right)\left(x^2+4x-21\right)-297=0\)
Đặt \(b=x^2+4x\)
Phương trình (2) sẽ trở thành \(\left(b-5\right)\left(b-21\right)-297=0\)
=>\(b^2-26b+105-297=0\)
=>\(b^2-26b-192=0\)
=>(b-32)(b+6)=0
=>\(\left(x^2+4x-32\right)\left(x^2+4x+6\right)=0\)
mà \(x^2+4x+6=\left(x+2\right)^2+2>0\forall x\)
nên \(x^2+4x-32=0\)
=>(x+8)(x-4)=0
=>\(\left[{}\begin{matrix}x+8=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\x=4\end{matrix}\right.\)
f: \(x^4-2x^2-144x-1295=0\)
=>\(x^4-7x^3+7x^3-49x^2+47x^2-329x+185x-1295=0\)
=>\(\left(x-7\right)\cdot\left(x^3+7x^2+47x+185\right)=0\)
=>\(\left(x-7\right)\left(x+5\right)\left(x^2+2x+37\right)=0\)
mà \(x^2+2x+37=\left(x+1\right)^2+36>0\forall x\)
nên (x-7)(x+5)=0
=>\(\left[{}\begin{matrix}x-7=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-5\end{matrix}\right.\)
(x-1)(x-3)(x+5)(x+7)=297
M.n giúp mk ý này vs
\(\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)=297\)
\(\Rightarrow\left[\left(x-1\right)\left(x+5\right)\right]\left[\left(x-3\right)\left(x+7\right)\right]=297\)
\(\Rightarrow\left[x^2+4x-5\right]\left[x^2+4x-5-16\right]=297\)
Đặt \(x^2+4x-5=t\)
\(\Rightarrow t\left(t-16\right)=297\)
\(\Rightarrow t^2-16t+64=297+64\)
\(\Rightarrow\left(t+8\right)^2=361\)
\(\Rightarrow\left[{}\begin{matrix}t+8=19\\t+8=-19\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}t=11\\t=-27\end{matrix}\right.\)
Ta có : \(\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)=297\)
\(\Leftrightarrow\left[\left(x-1\right)\left(x+5\right)\right]\left[\left(x-3\right)\left(x+7\right)\right]=297\)
\(\Leftrightarrow\left(x^2-x+5x-5\right)\left(x^2-3x+7x-21\right)=297\)
\(\Leftrightarrow\left(x^2+4x-5\right)\left(x^2+4x-21\right)=297\)
\(\Leftrightarrow\left(x^2+4x-13+8\right)\left(x^2+4x-13-8\right)=297\)
\(\Leftrightarrow\left(x^2+4x-13\right)^2-64=297\)
\(\Leftrightarrow\left(x^2+4x-13\right)^2=361\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+4x-13=19\\x^2+4x-13=-19\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+4x+4-17=19\\x^2+4x+4-17=-19\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x+2\right)^2-17=19\\\left(x+2\right)^2-17=-19\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x+2\right)^2=36\\\left(x+2\right)^2=-2\left(VL\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=6\\x+2=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-8\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=4\\x=-8\end{matrix}\right.\)