Những câu hỏi liên quan
TP
Xem chi tiết
H24
18 tháng 2 2022 lúc 7:02

undefined

undefined

Bình luận (1)
MY
18 tháng 2 2022 lúc 8:16

\(ycđb\Leftrightarrow\left[{}\begin{matrix}\Delta\le0\Leftrightarrow\left(m-5\right)^2\le0\Leftrightarrow m=5\\1\le x1< x2\left(1\right)\\x1< x2\le-1\left(2\right)\end{matrix}\right.\)

\(\Delta>0\Leftrightarrow\left(m-5\right)^2>0\Leftrightarrow m\ne5\)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\left(x1-1\right)\left(x2-1\right)\ge0\\x1+x2-2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x1x2-\left(x1+x2\right)+1\ge0\\5m-5-2>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6m^2-10m-\left(5m-5\right)+1\ge0\\m>\dfrac{7}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\le\dfrac{1}{2}\\m\ge2\end{matrix}\right.\\m>\dfrac{7}{5}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\ge2\\m\ne5\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}\left(x1+1\right)\left(x2+1\right)\ge0\\x1+x2+2< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x1x2+x1+x2+1\ge0\\x1+x2+2< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6m^2-10m+5m-5+1\ge0\\5m-5-2< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\le-\dfrac{1}{2}\\m\ge\dfrac{4}{3}\end{matrix}\right.\\m< \dfrac{7}{5}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m\in[\dfrac{4}{3};\dfrac{7}{5})\\m\le-\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\)\(m\in(-\infty;-\dfrac{1}{2}]\cup[\dfrac{4}{3};\dfrac{7}{5})\cup[2;+\infty)\cup\left\{5\right\}\)

Bình luận (0)
AD
Xem chi tiết
HK
Xem chi tiết
NL
2 tháng 4 2020 lúc 20:48

\(a=1>0\) ; \(\Delta'=\left(m-2\right)^2-\left(m-2\right)=\left(m-2\right)\left(m-3\right)\)

a/ Để \(f\left(x\right)\le0\) \(\forall x\in\left(0;1\right)\)

\(\Leftrightarrow x_1\le0< 1\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\le0\\f\left(1\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m-2\le0\\1-\left(m-2\right)\le0\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn

Do đó các câu c, f cũng không tồn tại m thỏa mãn

b/ TH1: \(\Delta< 0\Rightarrow2< m< 3\)

TH2: \(\left\{{}\begin{matrix}\Delta=0\\-\frac{b}{2a}\notin\left(0;1\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=2\\m=3\end{matrix}\right.\)

TH3: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0\le x_1< x_2\\x_1< x_2\le1\end{matrix}\right.\end{matrix}\right.\)

\(\Delta>0\Rightarrow\left[{}\begin{matrix}m>3\\m< 2\end{matrix}\right.\)

\(0\le x_1< x_2\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\ge0\\\frac{x_1+x_2}{2}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m-2\ge0\\m-2>0\end{matrix}\right.\) \(\Rightarrow m>2\) \(\Rightarrow m>3\)

\(x_1< x_2\le1\Leftrightarrow\left\{{}\begin{matrix}f\left(1\right)\ge0\\\frac{x_1+x_2}{2}< 1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3-m\ge0\\m-2< 1\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m

Kết hợp 3 TH \(\Rightarrow m\ge2\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
2 tháng 4 2020 lúc 20:58

d/ Tương tự như câu b, nhưng

TH2: \(\left\{{}\begin{matrix}\Delta=0\\-\frac{b}{2a}\in\left[0;1\right]\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn

TH3: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0< x_1< x_2\\x_1< x_2< 1\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow m>3\)

Kết hợp 3 TH \(\Rightarrow\left[{}\begin{matrix}2< m< 3\\m>3\end{matrix}\right.\)

e/

TH1: \(\Delta\le0\Rightarrow2\le m\le3\)

TH2: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0\le x_1< x_2\\x_1< x_2\le1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>3\)

\(\Rightarrow m\ge2\)

Bình luận (0)
 Khách vãng lai đã xóa
KR
Xem chi tiết
MN
Xem chi tiết
AH
20 tháng 12 2017 lúc 0:58

Lời giải:

Ta có \(m.9^x-(2m+1).6^x+m.4^x\geq 0\)

\(\Leftrightarrow m\left(\frac{9}{4}\right)^x-(2m+1)\frac{6^x}{4^x}+m\geq 0\)

\(\Leftrightarrow m[\left(\frac{3}{2}\right)^x]^2-(2m+1)\left(\frac{3}{2}\right)^x+m\geq 0\)

Đặt \(\left(\frac{3}{2}\right)^x=t; x\in [0;1]\Rightarrow t\in [1; \frac{3}{2}]\)

BPT trở thành: \(mt^2-(2m+1)t+m\geq 0\)

\(\Leftrightarrow m(t^2-2t+1)-t\geq 0\)

\(\Leftrightarrow m(t-1)^2-t\geq 0\) (*)với mọi \(t\in [1; \frac{3}{2}]\)

Nếu \(m\) là số nguyên âm, \(\Rightarrow m(t-1)^2\leq 0\)

\(t\in [1; \frac{3}{2}]\Rightarrow -t < 0\)

Do đó \(m(t-1)^2-t< 0\) (trái với (*)). Vậy có nghĩa là không tồn tại số nguyên âm m nào thỏa mãn điều kiện đã cho

Vậy có 0 giá trị thỏa mãn.

Bình luận (0)
H24
Xem chi tiết
NL
13 tháng 4 2021 lúc 23:15

\(\Delta'=m^2-2m+3>0\) ; \(\forall x\)

Do đó bài toán thỏa mãn khi pt \(f\left(x\right)=0\) có 2 nghiệm thỏa mãn: \(x_1< -1< 2< x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}a.f\left(-1\right)< 0\\a.f\left(2\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}1.\left(1-2m+2m-3\right)< 0\\1\left(4+4m+2m-3\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow6m+1< 0\Rightarrow m< -\dfrac{1}{6}\)

Bình luận (0)
KC
Xem chi tiết
H24
Xem chi tiết
GH
20 tháng 6 2023 lúc 16:17

Ta có \(f\left(x\right)>0,\forall x\in\left(0;1\right)\)

\(\Leftrightarrow-x^2-2\left(m-1\right)x+2m-1>0,\forall x\left(0;1\right)\)

\(\Leftrightarrow-2m\left(x-1\right)>x^2-2x+1,\forall x\in\left(0;1\right)\) (*)

Vì \(x\in\left(0;1\right)\Rightarrow x-1< 0\) nên (*) \(\Leftrightarrow-2m< \dfrac{x^2-2x+1}{x-1}=x-1=g\left(x\right),\forall x\in\left(0;1\right)\)

\(\Leftrightarrow-2m\le g\left(0\right)=-1\Leftrightarrow m\ge\dfrac{1}{2}\)

Bình luận (1)
NL
Xem chi tiết
NL
15 tháng 2 2020 lúc 22:52

Điều đó xảy ra khi và chỉ khi:

\(\Delta'=\left(m+1\right)^2-3\left(-2m^2+3m-2\right)\le0\)

\(\Leftrightarrow m^2+m+1\le0\)

\(\Leftrightarrow\left(m+\frac{1}{2}\right)^2+\frac{3}{4}\le0\)

Không tồn tại m thỏa mãn yêu cầu đề bài

Bình luận (0)
 Khách vãng lai đã xóa