Chương 2: HÀM SỐ LŨY THỪA. HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

MN

Số giá trị nguyên âm của m để \(m.9^x-\left(2m+1\right).6^x+m.4^x\ge0\forall x\in\left[0;1\right]\)

AH
20 tháng 12 2017 lúc 0:58

Lời giải:

Ta có \(m.9^x-(2m+1).6^x+m.4^x\geq 0\)

\(\Leftrightarrow m\left(\frac{9}{4}\right)^x-(2m+1)\frac{6^x}{4^x}+m\geq 0\)

\(\Leftrightarrow m[\left(\frac{3}{2}\right)^x]^2-(2m+1)\left(\frac{3}{2}\right)^x+m\geq 0\)

Đặt \(\left(\frac{3}{2}\right)^x=t; x\in [0;1]\Rightarrow t\in [1; \frac{3}{2}]\)

BPT trở thành: \(mt^2-(2m+1)t+m\geq 0\)

\(\Leftrightarrow m(t^2-2t+1)-t\geq 0\)

\(\Leftrightarrow m(t-1)^2-t\geq 0\) (*)với mọi \(t\in [1; \frac{3}{2}]\)

Nếu \(m\) là số nguyên âm, \(\Rightarrow m(t-1)^2\leq 0\)

\(t\in [1; \frac{3}{2}]\Rightarrow -t < 0\)

Do đó \(m(t-1)^2-t< 0\) (trái với (*)). Vậy có nghĩa là không tồn tại số nguyên âm m nào thỏa mãn điều kiện đã cho

Vậy có 0 giá trị thỏa mãn.

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NA
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
PD
Xem chi tiết
PD
Xem chi tiết
H24
Xem chi tiết