N = \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{380}\)
tìm x,biết:
\(\dfrac{1}{6}x+\dfrac{1}{12}x+\dfrac{1}{20}x+...+\dfrac{1}{380}x=9\)
câu này dễ lắm trả lời đúng mình tick
\(\dfrac{1}{6}x+\dfrac{1}{12}x+\dfrac{1}{20}x+...+\dfrac{1}{380}=9\)
\(x\left(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{380}\right)=9\)
\(x\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{19.20}\right)=9\)
\(x\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\right)=9\)
\(x\left(\dfrac{1}{2}-\dfrac{1}{20}\right)=9\)
\(x.\dfrac{9}{20}=9\)
\(x=9:\dfrac{9}{20}\)
\(x=20\)
Vậy \(x=20\)
VÒNG 2
Bài 1: Mèo con nhanh nhẹn
\(\dfrac{1}{2}\) + \(\dfrac{1}{12}\) | 2 + \(\dfrac{1}{6}\) | \(\dfrac{1}{20}\) | 1 - \(\dfrac{1}{9}\) | |
\(\dfrac{1}{15}\) + \(\dfrac{2}{15}\) | \(\dfrac{1}{2}\) + \(\dfrac{2}{3}\) | \(\dfrac{7}{12}\) | \(\dfrac{4}{12}\) | |
\(\dfrac{9}{14}\)+ \(\dfrac{1}{14}\) | 1 + \(\dfrac{1}{6}\) | \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) | \(\dfrac{1}{3}\) - \(\dfrac{2}{9}\) | |
\(\dfrac{3}{2}\) + \(\dfrac{2}{3}\) | \(\dfrac{1}{5}\) | 1 - \(\dfrac{8}{9}\) | ||
\(\dfrac{5}{7}\) | 1 - \(\dfrac{2}{3}\) | \(\dfrac{1}{3}\) + \(\dfrac{5}{9}\) |
Tính (theo mẫu).
Mẫu: \(\dfrac{1}{2}-\dfrac{5}{12}=\dfrac{6}{12}-\dfrac{5}{12}=\dfrac{6-5}{12}=\dfrac{1}{12}\) |
a) \(\dfrac{3}{4}-\dfrac{1}{8}\) b) \(\dfrac{2}{6}-\dfrac{5}{18}\) c) \(\dfrac{2}{5}-\dfrac{3}{20}\)
a) \(\dfrac{3}{4}-\dfrac{1}{8}=\dfrac{6}{8}-\dfrac{1}{8}=\dfrac{6-1}{8}=\dfrac{5}{8}\)
b) \(\dfrac{2}{6}-\dfrac{5}{18}=\dfrac{6}{18}-\dfrac{5}{18}=\dfrac{6-5}{18}=\dfrac{1}{18}\)
c) \(\dfrac{2}{5}-\dfrac{3}{20}=\dfrac{8}{20}-\dfrac{3}{20}=\dfrac{8-3}{20}=\dfrac{5}{20}=\dfrac{1}{4}\)
Chứng tỏ rằng: \(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{19}-\dfrac{1}{20}=\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{20}\)
\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}+\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{20}-\dfrac{1}{20}\right)\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{20}\right)\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{10}\right)\)
\(=\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{20}\) (đpcm)
Tính nhanh:
a, \(\dfrac{8}{9}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{12}-\dfrac{1}{6}-\dfrac{1}{2}\)
b, \(\left(-\dfrac{1}{4}+\dfrac{7}{35}-\dfrac{5}{3}\right)-\left(-\dfrac{15}{12}+\dfrac{6}{11}-\dfrac{48}{49}\right)\)
a: Ta có: \(\dfrac{8}{9}-\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{72}\right)\)
\(=\dfrac{8}{9}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{3}-...+\dfrac{1}{8}-\dfrac{1}{9}\right)\)
=0
Bài1. (4điểm) Thực hiện phép tính:
a) \(A=\dfrac{3}{5}+6\dfrac{5}{6}\left(11\dfrac{5}{20}-9\dfrac{1}{4}\right):8\dfrac{1}{3}\)
b) \(B=\dfrac{-1}{2}+\dfrac{-1}{6}+\dfrac{-1}{12}+\dfrac{-1}{20}+\dfrac{-1}{30}+\dfrac{-1}{42}+\dfrac{-1}{56}+\dfrac{-1}{72}+\dfrac{-1}{90}\)
a) \(A=\dfrac{3}{5}+6\dfrac{5}{6}+\left(11\dfrac{5}{20}-9\dfrac{1}{4}\right):8\dfrac{1}{3}\)
\(=\dfrac{3}{5}+\dfrac{41}{6}\left(11\dfrac{1}{4}-9\dfrac{1}{4}\right):8\dfrac{1}{3}\)
\(=\dfrac{3}{5}+\dfrac{41}{6}.2.\dfrac{3}{25}\)
\(=\dfrac{3}{5}+\dfrac{41}{25}\)
\(=\dfrac{15}{25}+\dfrac{41}{25}\)
\(=\dfrac{56}{25}\)
b) \(B=\dfrac{-1}{2}+\dfrac{-1}{6}+\dfrac{-1}{12}+\dfrac{-1}{20}+\dfrac{-1}{30}+\dfrac{-1}{42}+\dfrac{-1}{56}+\dfrac{-1}{72}+\dfrac{-1}{90}\)
\(=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=\) \(1-\dfrac{1}{10}\)
\(=\dfrac{-9}{10}\)
\(\dfrac{-1}{2}+\dfrac{-1}{6}+\dfrac{-1}{12}+\dfrac{-1}{20}+\dfrac{-1}{30}+\dfrac{-1}{42}+\dfrac{-1}{56}+\dfrac{-1}{72}+\dfrac{-1}{90}\)
`[-1]/2+[-1]/6+[-1]/12+[-1]/20+[-1]/30+[-1]/42+[-1]/56+[-1]/72+[-1]/90`
`=(-1)(1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90)`
`=(-1)(1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10)`
`=(-1)(1-1/10)`
`=(-1). 9/10=-9/10`
A = \(\dfrac{-1}{2}\) + \(\dfrac{-1}{6}\)+ \(\dfrac{-1}{12}\)+ \(\dfrac{-1}{20}\)+ \(\dfrac{-1}{30}\)+ \(\dfrac{-1}{42}\)+ \(\dfrac{-1}{56}\)+ \(\dfrac{-1}{72}\)+ \(\dfrac{-1}{90}\)
A = \(\dfrac{-1}{2}\) + \(\dfrac{-1}{2\times3}\)+ \(\dfrac{-1}{3\times4}\)+ \(\dfrac{-1}{4\times5}\)+ \(\dfrac{-1}{5\times6}\)+ \(\dfrac{-1}{6\times7}\)+ \(\dfrac{-1}{7\times8}\)+ \(\dfrac{-1}{8\times9}\)+ + \(\dfrac{-1}{9\times10}\)
A = - (\(\dfrac{1}{2}\)+ \(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+ \(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+ \(\dfrac{1}{4}\)- \(\dfrac{1}{5}\)+ \(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)+ \(\dfrac{1}{6}\)-\(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-\(\dfrac{1}{8}\)+\(\dfrac{1}{8}\)-\(\dfrac{1}{9}\)+ \(\dfrac{1}{9}\)-\(\dfrac{1}{10}\))
A = -(1-\(\dfrac{1}{10}\))
A = \(\dfrac{-9}{10}\)
tính
a, \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+......+\dfrac{1}{9500}\)
b, \(\dfrac{3}{2}-\dfrac{5}{6}-\dfrac{7}{12}-\dfrac{9}{20}-.....-\dfrac{19}{90}\)
a, \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\)
\(\Rightarrow\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(\Rightarrow\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}\)
\(\Rightarrow\dfrac{1}{1}-\dfrac{1}{100}\)
\(\Rightarrow\dfrac{99}{100}\)
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}\).Tính
ok luôn.hay thì like nha
ta có
1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72
=1/1*2+1/2*3+1/3*4+...+1/8*9
=1-1/2+1/2-1/3+1/3-1/4+...+1/8-1/9
=1-1/9
=8/9