Tìm x,y,z thuộc R biết : 1/x + 1/2y + 1/zx = x2 .y.z
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho x, y, z khác 1 chứng minh giá trị sau không phụ thuộc vào biến x, y, z.( xy+2x+1/xy+x+y+1)+(yz+2y+1/yz+y+z+1)+(zx+2z+1/zx+z+x+1)
Sửa lại đề là x;y;z khác -1.
\(A=\frac{xy+2x+1}{xy+x+y+1}+\frac{yz+2y+1}{yz+y+z+1}+\frac{zx+2z+1}{zx+z+x+1}=\)
\(A=\frac{x\left(y+1\right)+x+1}{x\left(y+1\right)+y+1}+\frac{y\left(z+1\right)+y+1}{y\left(z+1\right)+z+1}+\frac{z\left(x+1\right)+z+1}{z\left(x+1\right)+x+1}=\)
\(A=\frac{x\left(y+1\right)+x+1}{\left(x+1\right)\left(y+1\right)}+\frac{y\left(z+1\right)+y+1}{\left(y+1\right)\left(z+1\right)}+\frac{z\left(x+1\right)+z+1}{\left(z+1\right)\left(x+1\right)}=\)vì x;y;z khác -1 nên:
\(A=\frac{x}{x+1}+\frac{1}{y+1}+\frac{y}{y+1}+\frac{1}{z+1}+\frac{z}{z+1}+\frac{1}{x+1}=\)
\(A=\frac{x}{x+1}+\frac{1}{x+1}+\frac{y}{y+1}+\frac{1}{y+1}+\frac{z}{z+1}+\frac{1}{z+1}=\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}=1+1+1=3\)
A = 3 với mọi x;y;z khác -1 nên A không phụ thuộc vào x;y;z. đpcm
CMR biểu thức sau có giá trị nguyên \(A=\frac{xy+2y+1}{xy+x+y+1}+\frac{yz+2z+1}{yz+y+z+1}+\frac{zx+2x+1}{zx+z+x+1}\)
(Với \(x,y,z\in R;x,y,z\ne-1\))
\(A=\frac{xy+2y+1}{xy+x+y+1}+\frac{yz+2z+1}{yz+y+z+1}+\frac{zx+2x+1}{zx+z+x+1}\)
\(=\frac{y\left(x+1\right)+y+1}{\left(x+1\right)\left(y+1\right)}+\frac{z\left(y+1\right)+z+1}{\left(y+1\right)\left(z+1\right)}+\frac{x\left(z+1\right)+x+1}{\left(z+1\right)\left(x+1\right)}\)
\(=\frac{y}{y+1}+\frac{1}{x+1}+\frac{z}{z+1}+\frac{1}{y+1}+\frac{x}{x+1}+\frac{1}{z+1}\)
\(=\frac{y+1}{y+1}+\frac{z+1}{z+1}+\frac{x+1}{x+1}=3\)
VD13: Tìm GTLN và GTNN của:
b) N=3+4x/x^2+1
c) A=x^2-x+1/x^2+x+1
4) Cho x, y, z thuộc R thì x+y+z+xy+yz+zx=6. Tìm GTNN của A= x^2+y^2+z^2
5) Cho a, b, c thuộc R thỏa mãn: ab+bc+ca=5. Tìm min T=3a^2+3b^2+c^2
cho x,y,z thỏa mãn xyz=1. tìm GTNN của \(T=\dfrac{xy}{z^2x+z^2y}+\dfrac{yz}{x^2y+x^2z}+\dfrac{zx}{y^2x+y^2z}\)
\(T=\dfrac{\left(xy\right)^2}{zx+zy}+\dfrac{\left(yz\right)^2}{xy+xz}+\dfrac{\left(zx\right)^2}{yx+yz}\ge\dfrac{xy+yz+zx}{2}\ge\dfrac{3}{2}\sqrt[3]{\left(xyz\right)^2}=\dfrac{3}{2}\)
Rút gọn
M=\(\dfrac{xy+2x+1}{xy+x+y+1}+\dfrac{yz+2y+1}{yz+y+z+1}+\dfrac{zx+2z+1}{xz+z+x+1}\)
\(M=\dfrac{xy+2x+1}{xy+x+y+1}+\dfrac{yz+2y+1}{yz+y+z+1}+\dfrac{xz+2z+1}{xz+z+x+1}\)
\(M=\dfrac{xy+x+x+1}{x\left(y+1\right)+y+1}+\dfrac{yz+y+y+1}{y\left(z+1\right)+z+1}+\dfrac{xz+z+z+1}{z\left(x+1\right)+x+1}\)
\(\Rightarrow M=\dfrac{x\left(y+1\right)+x+1}{\left(x+1\right)\left(y+1\right)}+\dfrac{y\left(z+1\right)+y+1}{\left(y+1\right)\left(z+1\right)}+\dfrac{z\left(x+1\right)+z+1}{\left(z+1\right)\left(x+1\right)}\)
Quy đồng là xong nha
chứng minh A=(xy+zx+1)/(xy+x+y+1)+(yz+zy+1)/(yz+y+z+1)+(zx+zx+1)/(zx+x+z+1) không thuộc x, y, z
làm nhanh giùm mình nha ! đang cần gấp <:)
rút gọn ptđs
\(\dfrac{x+y+z-\left(xy+yz+zx+1\right)+xyz}{x^2y+1-x^2-y}\)
xét tử số:
x+y+z-(xy+yz+zx+1)+xyz
=(y-1)+z-(xy-x)-yz-zx+xyz
=(y-1)-x(y-1)-(yz-z)+(xyz-xz)
=(y-1)-x(y-1)-z(y-1)+xz(y-1)
=(y-1)(1+xz-x-z)
=(y-1)[(xz-z)-(x-1)]
=(y-1)[z(x-1)-(x-1)]
=(y-1)(z-1)(x-1)
Xét mẫu sô:
x^2.y+1-x^2-y
=(x^2.y-y)-(x-1)
=(x^2-1)y-(x-1)
=(x-1)(x+1)(y-1)
Thay tử và mẫu số vào phân thức đại số trên ta được:
\(\dfrac{\left(x-1\right)\left(y-1\right)\left(z-1\right)}{\left(x-1\right)\left(y-1\right)\left(x+1\right)}=\dfrac{z-1}{x+1}\)
Vậy.....
nhó tick cho mình để ủng hộ mình nhé
xin chân thành cảm ơn
tìm x,y thuộc Z biết :(x+1) (2y-1)=12
Vì (x+1)(2y-1)=12 nên x+1 và 2y-1 thuộc Ư(12)
Ư(12)={-12;-6;-4;-3;-2;-1;1;2;3;4;6;12}
Ta có bảng:
x+1 | -1 | -2 | -3 | -4 | -6 | -12 | 1 | 2 | 3 | 4 | 6 | 12 |
x | -2 | -3 | -4 | -5 | -7 | -13 | 0 | 1 | 2 | 3 | 5 | 11 |
2y-1 | -12 | -6 | -4 | -3 | -2 | -1 | 12 | 6 | 4 | 3 | 2 | 1 |
2y | -11 | -5 | -3 | -2 | -1 | 0 | 13 | 7 | 5 | 4 | 3 | 2 |
y | (loại) | loại | loại | -1 | loại | 0 | loại | loại | loại | 2 | loại | 1 |
tìm x,y,z thuộc N biết xy=z; yz=4x; zx=9y (trong 1 câu nha)
=> (xy).(yz).(zx) = z. (4x).(9y)
=> (xyz)2 = 36.(xyz)
=> (xyz)2 - 36.(xyz) = 0
=> (xyz).(xyz - 36) = 0
=> xyz = 0 hoặc xyz - 36 = 0
+) xyz = 0 .kết hợp bài cho => x = y = z = 0
+) xyz - 36 = 0 => xyz = 36 mà xy = z nên z.z = 36 => z = 6
Ta có yz = 4x => xyz = x.4x = 36 => x.x = 9 => x = 3
=> y = 36 : xz = 36 : 18 = 2
Vậy....