tìm m để : \(^{x^2}\)+ (m-2)x + m+5 = 0
Có 2 nghiệm x1 và x2 , sao cho \(x1^2\) + \(x2^2\) = 10
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tìm m để phương trình x2−(m−1)x−2=0x2−(m−1)x−2=0có 2 nghiệm phân biệt x1 và x2 (x1>x2) thỏa mãn |2x1|−|x2|=2+x1
Bài 1 cho pt x^2-2(m+1)x+4m+m^2=0 .Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 sao cho biểu thức A =|x1-x2| đạt giá trị nhỏ nhất
bài 2 cho pt x^2+mx+2m-4=0.Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+|x2|=3
bài 3 cho pt x^2-3x-m^2+1=0.tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+2|x2|=3
a Khi m=-2 \(\Rightarrow x^2+\left(-2-2\right)x+-2+5=0\Leftrightarrow x^2-4x+3=0\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\) b Theo hệ thức Vi-et có :
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2-m\\x_1x_2=m+5\end{matrix}\right.\)
Mà \(\left(x_1+x_2\right)^2-2x_1x_2=x_1^2+x_2^2=10\Rightarrow\left(2-m\right)^2-2\left(m+5\right)=10\Leftrightarrow m^2-4m+4-2m-10=10\Leftrightarrow m^2-6m-16=0\Leftrightarrow m^2+2m-8m-16=0\Leftrightarrow\left(m+2\right)\left(m-8\right)=0\Leftrightarrow\left[{}\begin{matrix}m=-2\\m=8\end{matrix}\right.\)
a) Thay m=-2 vào phương trình, ta được:
\(x^2-4x+3=0\)
\(\Leftrightarrow x^2-x-3x+3=0\)
\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy: Khi m=-2 thì phương trình có hai nghiệm phân biệt là S={1;3}
cho phương trình: x^2-2(m-1)x-3-m=0
a. chứng tỏ rằng phương trình có nghiệm x1,x2 với mọim
b. tìm m để phương trình có hai nghiệm trái dấu
c. tìm m để phương trình có hai nghiệm cùng dấu
d. tìm m sao cho nghiệm số x1,x2 của phương trình thỏa mãn x1^2+x2^2=10
Cho phương trình: \(x^2-4x+2m=0\) (x là ấn phụ)
a) Tìm m để phương trình có 2 nghiệm x1 và x2
b) Gọi x1 và x2 là 2 nghiệm của phương trình trên. Tìm m để \(x1^2+x2^2-x1-x2=16\)
a.
Phương trình có 2 nghiệm khi:
\(\Delta'=4-2m\ge0\Rightarrow m\le2\)
b.
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=2m\end{matrix}\right.\)
\(x_1^2+x_2^2-x_1-x_2=16\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=16\)
\(\Leftrightarrow16-4m-4=16\)
\(\Leftrightarrow m=-1\) (thỏa mãn)
a.\(\Delta=\left(-4\right)^2-4.2m=16-8m\)
Để pt có nghiệm x1, x2 thì \(\Delta>0\)
\(\Leftrightarrow16-8m>0\)
\(\Leftrightarrow-8m>-16\)
\(\Leftrightarrow m< 2\)
b.
Theo hệ thức Vi-ét, ta có:\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1.x_2=2m\end{matrix}\right.\)
\(x_1^2+x_2^2-x_1-x_2=16\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2-\left(x_1+x_2\right)=16\)
\(\Leftrightarrow4^2-2.2m-4-16=0\)
\(\Leftrightarrow-4m-4=0\)
\(\Leftrightarrow m=-1\)
Cho phương trình x2 -2(m-1)x - 2m = 0. Tìm m để phương trình có 2 nghiệm phân biệt x1 x2 sao cho x12 + x1 - x2 = 5 - 2m
Theo viet ta có
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-2m\end{matrix}\right.\)
Ta có: \(x_1^2+x_1-x_2=5-2m\)
\(\Leftrightarrow x_1^2+x_1-x_2=5+x_1x_2\)
\(\Leftrightarrow\left(x_1^2+x_1\right)-\left(x_2-x_1x_2\right)=5\)
\(\Leftrightarrow x_1\left(x_1+1\right)-x_2\left(x_1+1\right)=5\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1+1\right)=5\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x_1-x_2=1\\x_1+1=5\end{matrix}\right.\\\left\{{}\begin{matrix}x_1-x_2=5\\x_1+1=1\end{matrix}\right.\end{matrix}\right.\)
-Với \(\left\{{}\begin{matrix}x_1-x_2=1\\x_1+1=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_2=3\\x_1=4\end{matrix}\right.\)
\(\Rightarrow x_1x_2=12=-2m\)
\(\Rightarrow m=-6\)
-Với \(\left\{{}\begin{matrix}x_1-x_2=5\\x_1+1=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_2=-5\\x_1=0\end{matrix}\right.\)
\(\Rightarrow x_1.x_2=0=-2m\)
\(\Rightarrow m=0\)
Vậy \(m=0;m=-6\)
-Chúc bạn học tốt-
Tìm m để phương trình :x^2 -2 .(m+1) ,x +4m =0 .Có hai nghiệm x1 x2 sao cho :
( x1 +m) .(x2 +m) =3 m+2 .
Cho pt: x^2+4x-m^2-1=0 Tìm m để pt có nghiệm x1,x2 thoả mãn x1/x2+x2/x1= -5/2
Lời giải:
$\Delta'=4+m^2+1=5+m^2>0$ với mọi $m\in\mathbb{R}$ nên pt luôn có 2 nghiệm phân biệt với mọi $m\in\mathbb{R}$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=-4\\ x_1x_2=-(m^2+1)\end{matrix}\right.\)
Khi đó:
\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{-5}{2}\Leftrightarrow \frac{x_1^2+x_2^2}{x_1x_2}=-\frac{5}{2}\)
\(\Leftrightarrow \frac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}=\frac{-5}{2}\Leftrightarrow \frac{(x_1+x_2)^2}{x_1x_2}=-\frac{1}{2}\)
\(\Leftrightarrow \frac{16}{-(m^2+1)}=\frac{-1}{2}\Leftrightarrow m^2+1=32\)
\(\Rightarrow m=\pm \sqrt{31}\)
cho phương trình x^2-(m+1)x+2m-2=0
Tìm m để phương trình có 2 nghiệm x1,x2 thỏa mãn : 3(x1+x2) - x1.x2=10
phương trình: x^2-(m+1)x+2m-2=0 (1)
phương trình(1) là ptbh ẩn x có:đen ta = (-(m+1))^2 -4.1.(2m-2) =m^2+2m+1-8m+8 =m^2-6m+9 = (m-3)^2 với mọi m thuộc r
phương trình (1) có 2 nghiệm pb khi và chỉ khi đen ta lớn hơn 0 suy ra (m-3)^2 lớn hơn 0
khi và chỉ khi m-3 lớn hơn 0. ki và chỉ khi m lớn hơn 3.
theo hệ thức vi ét ta có x1+x2=m+1 (2) ;x1.x2=2m-2 (3)
có 3(x1+x2)-X1.X2=10 (4)
từ (2) (3) (4) suy ra 3(m+1)-(2m-2)=10
khi và chỉ khi 3m+3-2m+2=10
khi và chỉ khi m+5=10
khi và chỉ khi m=5
vậy khi m=5 thì pt(1) có 2n pb x1,x2 thỏa mãn 3(x1+x2)-x1.x2=10
Cách 1:
Từ pt ta có:
\(\Delta=\left(m-3\right)^2>0\)
=>x1=(m-1-m+3)/2=1
->x2=(m-1+m-2)/2=(2m-3)/2
Bạn thay x1,x2 vào rồi tính nha tới đây thì đơn giản rồi.
Cách 2:
từ pt ta có:
\(\hept{\begin{cases}\Delta=\left(m-3\right)^2>0\\x_1+x_2=m-1\\x_1x_2=2-2m\end{cases}}\)
Bạn cũng thay vào rồi tính nha.
Đúng thì nhớ k cho mình nha.