Tìm x,y \(\in\) N* , t/m : x(y+1)2 = 32y
Tìm \(x,y\in\) N* : \(xy^2+2xy+x=32y\)
Lời giải:
\(xy^2+2xy+x=32y\)
\(\Leftrightarrow x(y^2+2y+1)=32y\)
\(\Leftrightarrow x(y+1)^2=32y\Rightarrow x=\frac{32y}{(y+1)^2}\)
Ta thấy \((y+1)^2-4y=(y-1)^2\geq 0\Rightarrow (y+1)^2\geq 4y\)
\(\Rightarrow x=\frac{32y}{(y+1)^2}\leq \frac{32y}{4y}=8\)
Từ đây ta xét các TH:
+) Nếu $x$ chẵn thì \(x\in\left\{2;4;6;8\right\}\)
Thử từng giá trị của $x$ ta thu được \((x,y)=(6,3); (8,1)\)
+) Nếu $x$ lẻ thì vì \(x(y+1)^2=32y\vdots 32\Rightarrow (y+1)^2\vdots 32\)
\(y+1\vdots 8\)
\(\Rightarrow 32y=x(y+1)^2\vdots 64\Rightarrow y\vdots 2\) (vô lý vì $y+1$ chẵn thì $y$ phải lẻ)
Vậy $(x,y)=(6,3), (8,1)$
tìm các số nguyên dương x, y thỏa mãn: x(y+1)2=32y
Ta có:\(32⋮y\Rightarrow x\left(y+1\right)^2⋮y\) . Mà \(\left(y,y+1\right)=1\Rightarrow\left(y+1\right)^2\) \(⋮̸y\Rightarrow x⋮y\)
Đặt x=yt. Ta có: \(x\left(y+1\right)^2=32y\)
\(\Rightarrow yt\left(y+1\right)^2=32y\)
\(\Rightarrow t\left(y+1\right)^2=32\)
\(\Rightarrow\left(y+1\right)^2\) là Ư chính phương của 32
TH1\(\)\(\left\{\begin{matrix}t=32\\\left(y+1\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}t=32\\y+1=1\end{matrix}\right.\Rightarrow\left\{\begin{matrix}t=32\\y=0\end{matrix}\right.\)(loại vì \(y\in\) N*)
TH2\(\left\{\begin{matrix}t=2\\\left(y+1\right)^2=16\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}t=2\\y+1=4\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}t=2\\y+1=4\end{matrix}\right.\Rightarrow\left\{\begin{matrix}t=2\\y=3\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=6\\y=3\end{matrix}\right.\)
TH3\(\left\{\begin{matrix}t=8\\\left(y+1\right)^2=4\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}t=8\\y+1=2\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}t=8\\y+1=2\end{matrix}\right.\Rightarrow\left\{\begin{matrix}t=8\\y=1\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=8\\y=1\end{matrix}\right.\)
Vậy có 2 cặp số x,y. Đó là (x=6,y=3) và (x=8,y=1)
Tìm x,y nguyên biết x.(2y-1)2=32y+16
bài này mk thấy vừa đăng lên olm mà
Tìm x,y\(\in\)N* : xy2+2xy+x=32y
pt <=> \(x\left(y^2+2y+1\right)=32y\)
\(\Leftrightarrow x\left(y+1\right)^2=32y\)
\(\Leftrightarrow\frac{x}{y}.\left(y+1\right)^2=32\)
do x,y \(\in\)N* => y+1>1
\(\Leftrightarrow\frac{x}{y}.\left(y+1\right)^2=2.4^2=8.2^2\)
TH1: \(\hept{\begin{cases}\frac{x}{y}=2\\y+1=4\end{cases}\Leftrightarrow}\hept{\begin{cases}x=6\\y=3\end{cases}}\)
TH2: \(\hept{\begin{cases}\frac{x}{y}=8\\y+1=2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=8\\y=1\end{cases}}\)
Vậy (x,y)=...
Tìm x,y thuộc N biết:
x(y—1)=32y
Tìm số nguyên dương x,y thỏa mãn phương trình xy2+2xy+x=32y
\(xy^2+2xy+x=32y\)
\(\Leftrightarrow x\left(y^2+2y+1\right)=32y\)
\(\Leftrightarrow x=\dfrac{32y}{y^2+2y+1}\Leftrightarrow x=\dfrac{32y}{\left(y+1\right)^2}\)
\(\Leftrightarrow x=\dfrac{32}{y+1}-\dfrac{32}{\left(y+1\right)^2}\)
Để x nguyên dương thì
\(\left(y+1\right)^2\inƯ\left(32\right)\) và \(\left(y+1\right)^2\) là số chính phương
=> \(\left(y+1\right)^2=\left\{1;4;16\right\}\)
\(\Leftrightarrow y+1=\left\{1;2;4\right\}\)
\(\Leftrightarrow y=\left\{0;1;3\right\}\) vì y nguyên dương nên: \(\left[{}\begin{matrix}y=1\Rightarrow x=8\\y=3\Rightarrow x=6\end{matrix}\right.\)
Vậy(x;y) = {8;1) ; (6;3)
1) ghpt \(\left\{{}\begin{matrix}x^3=2x+y\\y^3=2y+x\end{matrix}\right.\)
2)tìm các số nguyên dương x,y thỏa pt \(xy^2+2xy+x=32y\)
câu 2:
\(Pt\Leftrightarrow xy^2+\left(2x-32\right)y+x=0\)
phương trình ẩn y phải có nghiệm ,xét
\(\Delta'=\left(x-16\right)^2-x^2\ge0\)
\(\Leftrightarrow x^2-32x+256-x^2\ge0\Leftrightarrow x\le8\)
mà x,y là các số nguyên dương \(\Rightarrow1\le x\le8\left(x\in N\right)\)
lần lượt thử từng Th ta thu được (x;y)=(6;3),(8;1)
cách khác: \(Pt\Leftrightarrow x\left(y+1\right)^2=32y\Leftrightarrow x=\dfrac{32y}{\left(y+1\right)^2}\)
x nguyên dương , (y;\(\left(y+1\right)^2\))=1 nên 32\(⋮\left(y+1\right)^2\left(y\in z\right)\)
lần lượt thử từng Th như trên
Tìm x,y\(\in Z\): xy2+2xy+x=32y
xy2 + 2xy + x = 32y
xy2 + 2xy - 32y + x = 0
<=> x = 32y/ ( y2 + 2y + 1) = 32/ (y + 1) - 32/( y + 1)2
x nguyên khi (y+1)^2 là ước của 32 => (y+1)^2 = 1,4,16
=> y + 1 = 1,2,4 vì y nguyên dương
=>y = 0( loại ) ; 1;3
=> x
Với x,y là các số thực thỏa mãn điều kiện \(\left(2+x\right)\left(y-1\right)=\frac{9}{4}\). Tìm gtnn của biểu thức
\(A=\sqrt{x^4+4x^3+6x^2+4x+2}+\sqrt{y^4-8y^3+24y^2-32y+17}\)
\(A=\sqrt{\left(x+1\right)^4+1}+\sqrt{\left(y-2\right)^4+1}\)
Đặt \(\left(x+1;y-2\right)=\left(a;b\right)\)
\(\Rightarrow\left(a+1\right)\left(b+1\right)=\frac{9}{4}\)
\(\Leftrightarrow ab+a+b=\frac{5}{4}\)
\(\Rightarrow\frac{a^2+b^2}{2}+\sqrt{2\left(a^2+b^2\right)}\ge\frac{5}{4}\)
\(\Rightarrow a^2+b^2\ge\frac{1}{2}\)
\(A=\sqrt{a^4+1}+\sqrt{b^4+1}\ge\sqrt{\left(a^2+b^2\right)^2+4}\ge\sqrt{\frac{1}{4}+4}=\frac{\sqrt{17}}{2}\)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\) hay \(\left\{{}\begin{matrix}x=-\frac{1}{2}\\y=\frac{5}{2}\end{matrix}\right.\)