Violympic toán 9

DN

Tìm số nguyên dương x,y thỏa mãn phương trình xy2+2xy+x=32y

AT
19 tháng 8 2018 lúc 6:26

\(xy^2+2xy+x=32y\)

\(\Leftrightarrow x\left(y^2+2y+1\right)=32y\)

\(\Leftrightarrow x=\dfrac{32y}{y^2+2y+1}\Leftrightarrow x=\dfrac{32y}{\left(y+1\right)^2}\)

\(\Leftrightarrow x=\dfrac{32}{y+1}-\dfrac{32}{\left(y+1\right)^2}\)

Để x nguyên dương thì

\(\left(y+1\right)^2\inƯ\left(32\right)\)\(\left(y+1\right)^2\) là số chính phương

=> \(\left(y+1\right)^2=\left\{1;4;16\right\}\)

\(\Leftrightarrow y+1=\left\{1;2;4\right\}\)

\(\Leftrightarrow y=\left\{0;1;3\right\}\) vì y nguyên dương nên: \(\left[{}\begin{matrix}y=1\Rightarrow x=8\\y=3\Rightarrow x=6\end{matrix}\right.\)

Vậy(x;y) = {8;1) ; (6;3)

Bình luận (1)

Các câu hỏi tương tự
NH
Xem chi tiết
MD
Xem chi tiết
MD
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
TH
Xem chi tiết
NC
Xem chi tiết
BM
Xem chi tiết
BB
Xem chi tiết