Đại số lớp 7

YR

tìm các số nguyên dương x, y thỏa mãn: x(y+1)2=32y

TH
31 tháng 1 2017 lúc 22:35

Ta có:\(32⋮y\Rightarrow x\left(y+1\right)^2⋮y\) . Mà \(\left(y,y+1\right)=1\Rightarrow\left(y+1\right)^2\) \(⋮̸y\Rightarrow x⋮y\)

Đặt x=yt. Ta có: \(x\left(y+1\right)^2=32y\)

\(\Rightarrow yt\left(y+1\right)^2=32y\)

\(\Rightarrow t\left(y+1\right)^2=32\)

\(\Rightarrow\left(y+1\right)^2\) là Ư chính phương của 32

TH1\(\)\(\left\{\begin{matrix}t=32\\\left(y+1\right)^2=1\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}t=32\\y+1=1\end{matrix}\right.\Rightarrow\left\{\begin{matrix}t=32\\y=0\end{matrix}\right.\)(loại vì \(y\in\) N*)

TH2\(\left\{\begin{matrix}t=2\\\left(y+1\right)^2=16\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}t=2\\y+1=4\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}t=2\\y+1=4\end{matrix}\right.\Rightarrow\left\{\begin{matrix}t=2\\y=3\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=6\\y=3\end{matrix}\right.\)

TH3\(\left\{\begin{matrix}t=8\\\left(y+1\right)^2=4\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}t=8\\y+1=2\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}t=8\\y+1=2\end{matrix}\right.\Rightarrow\left\{\begin{matrix}t=8\\y=1\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=8\\y=1\end{matrix}\right.\)

Vậy có 2 cặp số x,y. Đó là (x=6,y=3) và (x=8,y=1)

Bình luận (0)

Các câu hỏi tương tự
TM
Xem chi tiết
MQ
Xem chi tiết
LK
Xem chi tiết
H24
Xem chi tiết
BB
Xem chi tiết
NL
Xem chi tiết
MA
Xem chi tiết
BO
Xem chi tiết
CN
Xem chi tiết