Những câu hỏi liên quan
QT
Xem chi tiết
TT
Xem chi tiết
NL
20 tháng 7 2021 lúc 6:13

Ta có: 

\(I=\int\limits^1_0\dfrac{x+1}{\left(x^2+1\right)\sqrt{x^3+1}}dx+\int\limits^{+\infty}_1\dfrac{x+1}{\left(x^2+1\right)\sqrt{x^3+1}}dx=I_1+I_2\)

Do hàm \(f\left(x\right)=\dfrac{x+1}{\left(x^2+1\right)\sqrt{x^3+1}}\) liên tục và xác định trên \(\left[0;1\right]\) nên \(I_1\) là 1 tích phân xác định hay \(I_1\) hội tụ

Xét \(I_2\) , ta có \(f\left(x\right)=\dfrac{x+1}{\left(x^2+1\right)\sqrt{x^3+1}}>0\) với mọi \(x\ge1\)

Đặt \(g\left(x\right)=\dfrac{1}{x^2\sqrt{x}}\)

\(\lim\limits_{x\rightarrow+\infty}\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{\left(x+1\right)x^2\sqrt{x}}{\left(x^2+1\right)\sqrt{x^3+1}}=1\) (1)

\(\int\limits^{+\infty}_1g\left(x\right)dx=\int\limits^{+\infty}_1\dfrac{1}{x^2\sqrt{x}}dx\) hội tụ do \(\alpha=\dfrac{5}{2}>1\) (2)

(1);(2) \(\Rightarrow I_2\) hội tụ

\(\Rightarrow I\) hội tụ

Bình luận (0)
NP
Xem chi tiết
HD
Xem chi tiết
NL
14 tháng 11 2021 lúc 14:11

\(f\left(x\right)=\dfrac{x^2-1}{x^4+1}\) dương trên miền đã cho

Ta có: \(\dfrac{x^2-1}{x^4+1}\sim\dfrac{x^2}{x^4}=\dfrac{1}{x^2}\) khi \(x\rightarrow+\infty\)

Mà \(\int\limits^{+\infty}_1\dfrac{dx}{x^2}\) hội tụ nên \(\int\limits^{+\infty}_1\dfrac{x^2-1}{x^4+1}dx\) hội tụ

Bình luận (0)
TB
Xem chi tiết
NL
14 tháng 12 2021 lúc 8:52

Khi \(x\rightarrow+\infty\) thì \(\dfrac{1}{x^5+2x}\sim\dfrac{1}{x^5}\)

Mà \(\int\limits^{+\infty}_1\dfrac{1}{x^5}dx\) hội tụ \(\Rightarrow\int\limits^{+\infty}_1\dfrac{1}{x^5+2x}dx\) hội tụ

Bình luận (2)
TT
Xem chi tiết
GT
2 tháng 12 2016 lúc 12:25

đặt t = lnx

tôi ko biết \(\varepsilon\) trong bài là gì, tuy nhiên nếu nó là số bất kì thì xét 2 TH sau để biết đk t

TH1: \(\varepsilon\in\left(0;1\right)\)

TH2: \(\varepsilon>1\)

Bình luận (0)
TC
27 tháng 2 2017 lúc 10:11

Tích phân

Bình luận (0)
JC
Xem chi tiết
NL
28 tháng 2 2023 lúc 17:44

\(I=\int\limits^e_1xlnxdx+\int\limits^e_1\dfrac{lnx}{x}dx=I_1+I_2\)

Xét \(I_1\) , đặt \(\left\{{}\begin{matrix}u=lnx\\dv=xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=\dfrac{x^2}{2}\end{matrix}\right.\)

\(\Rightarrow I_1=\dfrac{x^2}{2}lnx|^e_1-\int\limits^e_1\dfrac{x}{2}=\dfrac{e^2}{2}-\dfrac{e}{2}+\dfrac{1}{2}\)

Xét \(I_2=\int\limits^e_1\dfrac{lnx}{x}dx=\int\limits^e_1lnx.d\left(lnx\right)=\dfrac{ln^2x}{2}|^e_1=\dfrac{1}{2}\)

\(\Rightarrow I=\dfrac{e^2}{2}-\dfrac{e}{2}+1\)

Bình luận (0)
DB
Xem chi tiết
HL
Xem chi tiết
VN
4 tháng 3 2019 lúc 3:20

*) So sánh ảnh ảo của một vật tạo bởi thấu kính hội tụ và thấu kính phân kì:

- Giống nhau: Cùng chiều với vật.

- Khác nhau:

+ Đối với thấu kính hội tụ thì ảnh lớn hơn vật và ở xa thấu kính hơn vật.

+ Đốì với thâu kính phân kì thì ảnh nhỏ hơn vật và ở gần thấu kính hơn vật.

*) Cách nhận biết nhanh chóng một thấu kính hội tụ hay phân kì: Đưa thấu kính lại gần dòng chữ trên trang sách. Nếu nhìn qua thấu kính thấy hình ảnh dòng chữ cùng chiều, to hơn so với khi nhìn trực tiếp thì đó là thấu kính hội tụ. Ngược lại, nếu nhìn thấy hình ảnh dòng chữ cùng chiều, nhỏ hơn so với nhìn trực tiếp thì đó là thẩu kính phân kì.

Bình luận (0)