Tìm gtln của đa thức R=1+x-2x² P=2x²-3x
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bài 13. Cho 2 đa thức: P(x)= 4x2 + x3 - 2x +3 -x-x3 +3x -2x2
Q(x)= 3x2 - 3x +2 -x3 +2x - x2
b)Tìm đa thức R(x) sao cho P(x) - Q(x) - R(x) =0
`P(x)=\(4x^2+x^3-2x+3-x-x^3+3x-2x^2\)
`= (x^3-x^3)+(4x^2-2x^2)+(-2x-x+3x)+3`
`= 2x^2+3`
`Q(x)=`\(3x^2-3x+2-x^3+2x-x^2\)
`= -x^3+(3x^2-x^2)+(-3x+2x)+2`
`= -x^3+2x^2-x+2`
`P(x)-Q(x)-R(x)=0`
`-> P(X)-Q(x)=R(x)`
`-> R(x)=P(x)-Q(x)`
`-> R(x)=(2x^2+3)-(-x^3+2x^2-x+2)`
`-> R(x)=2x^2+3+x^3-2x^2+x-2`
`= x^3+(2x^2-2x^2)+x+(3-2)`
`= x^3+x+1`
`@`\(\text{dn inactive.}\)
a: P(x)-Q(x)-R(x)=0
=>R(x)=P(x)-Q(x)
=2x^2+3+x^3-2x^2+x-2
=x^3+x+1
Cho đa thức P(x) = 2x ^ 4 - x ^ 2 + x - 2 Tìm các đa thức Q(x), H(x), R(x) sao cho:
a) Q(x) + P(x) = 3x ^ 4 + x ^ 3 + 2x ^ 2 + x + 1 .
b) P(x) - H(x) = x ^ 4 - x ^ 3 + x ^ 2 - 2
c) R(x) - P(x) = 2x ^ 3 + x ^ 2 + 1 .
a: Q(x)=3x^4+x^3+2x^2+x+1-2x^4+x^2-x+2
=x^4+x^2+3x^2+3
b: H(x)=2x^4-x^2+x-2-x^4+x^3-x^2+2
=x^4+x^3-2x^2+x
c: R(x)=2x^3+x^2+1+2x^4-x^2+x-2
=2x^4+2x^3+x-1
tìm GTNN của biểu thức : |2x+1|+|x-y+1|, b: |x+2|+1/2.|2x-1| tìm GTLN của biểu thức : |3x+2|-|2020-3x| các cao nhân giúp em với ạ
tìm nghiệm của các đa thức sau:
a) P(x)=(x-1)(3x+2) b)Q(x)=2x^2-3x c)R(x)=x^2-3x+2 d)M(x)=x^2-3
a) P(x) = ( x-1) (3x+2)
=> (x-1) (3x+2) = 0
TH1: x - 1 = 0 TH2: 3x + 2 =0
x = 1 3x = -2
x = -2/3 (âm 2 phần ba)
Vây x = { 1,-2/3}
a) P(x) = ( x-1) (3x+2)
Cho P(x) = 0
(x-1) (3x+2) = 0
TH1: x - 1 = 0 TH2: 3x + 2 =0
x = 1 3x = -2
x = \(-\dfrac{2}{3}\)
Vây x = 1 hoặc x = \(-\dfrac{2}{3}\) là nghiệm của đa thức P(x)
b, Q(x) = 2x2-3x
Cho Q (x) = 0
=> 2x2-3x = 0
x(2x-3)=0
x = 0 hoặc 2x-3 = 0
2x = 3
x = \(\dfrac{3}{2}\)
Vậy x = 0 hoặc x = \(\dfrac{3}{2}\)là nghiệm của đa thưc Q (x)
c, R(x) = x2 - 3x +2
Cho R(x) = 0
=> x2-3x+2 = 0
x2 -x-2x+2 = 0 ( cái này là chương trình lớp 8 rồi không biết bạn học chưa ? )
(x2-x ) - ( 2x -2 ) = 0
x(x-1) - 2 (x -1) = 0
(x-1)(x-2) = 0
x-1 = 0 hoặc x-2 = 0
x = 1 x = 2
Vậy x = 1 hoặc x= 2 là nghiệm của đa thức R(x)
d, M(x) = x2 -3
Cho M(x) = 0
=> x2 - 3 =0
x2 = 3
x = \(\sqrt{3}\) hoặc x = \(-\sqrt{3}\)
Vậy x = \(\sqrt{3}\) hoặc x = \(-\sqrt{3}\) là nghiệm của đa thức M(x)
Cho 2 đa thức p(x)=4x^3+2x-3+2x-2x^2-1 và q(x)=6x^3-3x+5-2x+3x^2.
a. Tìm bậc của p(x) và q(x)
b. Tìm đa thức m(x) sao cho m(x)=p(x)+q(x)
a, \(P\left(x\right)=4x^3+2x-3+2x-2x^2-1\\ =4x^3-2x^2+\left(2x+2x\right)+\left(-3-1\right)\\ =4x^3-2x^2+4x-4\)
Bậc của P(x) là 3
\(Q\left(x\right)=6x^3-3x+5-2x+3x^2\\ =6x^3+3x^2+\left(-3x-2x\right)+5\\ =6x^3+3x^2-5x+5\)
Bậc của Q(x) là 3
b, \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=4x^3-2x^2+4x-4+6x^3+3x^2-5x+5\\ =\left(4x^3+6x^3\right)+\left(-2x^2+3x^2\right)+\left(4x-5x\right)+\left(-4+5\right)\\ =10x^3+x^2-x+1\)
Tìm nghiệm của đa thức g(x)=x^2-3x-4
Tìm nghiệm của đa thức h(x)=2x^3-x^2-2x+1
\(x^2-3x-4=0\)
\(< =>x^2+x-4x-4=0\)
\(< =>x\left(x+1\right)-4\left(x+1\right)=0\)
\(< =>\left(x-4\right)\left(x+1\right)=0\)
\(< =>\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)
\(2x^3-x^2-2x+1=0\)
\(< =>x^2\left(2x-1\right)-\left(2x-1\right)=0\)
\(< =>\left(x^2-1\right)\left(2x-1\right)=0\)
\(< =>\left(x-1\right)\left(x+1\right)\left(2x+1\right)=0\)
\(< =>\hept{\begin{cases}x=1\\x=-1\\x=-\frac{1}{2}\end{cases}}\)
Cho đa thức: P(x) = \(x^4-3x^2+\dfrac{1}{2}-x\).
Tìm các đa thức Q(x), R(x), sao cho:
a, P(x) +Q(x) = \(x^5-2x^2+1\)
b, P(x) - R(x) = \(x^3\)
a)\(Q\left(x\right)=x^5+x^4-x^2-\dfrac{1}{2}-x\)
b)\(R\left(x\right)=x^4+x^3-3x^2+\dfrac{1}{2}-x\)
cho 2 đa thức P(x) = 2x^4+x^3-4x+5 và Q(x) = x^4 +3x^3+2x-1
tính P(x) + Q (X)
tính đa thức R(x)bt : R(X)+P(x)=x^4-2x^2=1
\(P\left(x\right)+Q\left(x\right)=\left(2x^4+x^3-4x+5\right)+\left(x^4+3x^3+2x-1\right)\)
\(=2x^4+x^3-4x+5+x^4+3x^3+2x-1\)
\(=\left(2x^4+x^4\right)+\left(x^3+3x^3\right)+\left(-4x+2x\right)+\left(5-1\right)\)
\(=3x^4+4x^3-2x+4\)
\(R\left(x\right)+P\left(x\right)=x^4-2x^2+1\)
\(\Rightarrow R\left(x\right)=\left(x^4-2x^2+1\right)-P\left(x\right)\)
\(\Rightarrow R\left(x\right)=\left(x^4-2x^2+1\right)-\left(2x^4+x^3-4x+5\right)\)
\(\Rightarrow R\left(x\right)=x^4-2x^2+1-2x^4-x^3+4x-5\)
\(\Rightarrow R\left(x\right)=\left(x^4-2x^4\right)+\left(-2x^2\right)+\left(1-5\right)+\left(-x^3\right)+4x\)
\(\Rightarrow R\left(x\right)=-x^4-2x^2-4-x^3+4x\)
Cho đa thức : A(x) = 2x^3 + x - 3x^2 - 2x^3 - 1 + 3x^2
a) Thu gọn và xác định bậc của đa thức A(x)
b) Tìm nghiệm của đa thức A(x)
`a, A(x) = 2x^3 + x - 3x^2 - 2x^3 - 1 + 3x^2`
`= (2x^3-2x^3) +(-3x^2+ 3x^2) + x-1`
`= x-1`
Bậc của đa thức : `1`
`b,` Ta có ` A(x)= x-1=0`
`x-1=0`
`=>x=0+1`
`=>x=1`
a) \(A\left(x\right)=2x^3+x-3x^2-2x^3-1+3x^2\)
\(A\left(x\right)=\left(2x^3-2x^3\right)-\left(3x^2-3x^2\right)+x-1\)
\(A\left(x\right)=x-1\)
Đa thức có bật 1
b) \(x-1=0\)
\(\Rightarrow x=1\)
Vậy đa thức có nghiệm là 1