tinh gia tri bieu thuc sau
x2 + x^4 + x^6 + x^*+ . . .+x^100 tai x= -1
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tinh gia tri bieu thuc A tai x=-1/2; y=4;z=6
A=x^2y+(-x^3-3xyz)-(4-3xyz)+(-14^15)^0
\(A=x^2y-x^3-3xyz-4+3xyz+1=x^2y-x^3-3\)
\(=\dfrac{1}{4}\cdot4-\left(-\dfrac{1}{8}\right)-3\)
=1-3+1/8
=-2+1/8=-15/8
tinh gia tri bieu thuc E=x^+x^4+x^6........=x^48+x^100
Thuc hien phep nhan rut gon roi tinh gia tri bieu thuc
B)x(x^2-y)-x^2(x+y)+y(x^2-x) tai x=1/2 va y=-100
=x^3-xy-x^3-x^2y+x^2y--xy
=-2xy
thay x=1\2 va y bang 100 vao Bta duoc
B= -2.1\2.100=-100
Cho bieu thuc A = \(^{x2+4x+3}\)
a Tinh gia tri bieu thuc tai x= \(\frac{-1}{2}\)
b Tinh gia tri x de bieu thuc A bang 0
a. Tại x=\(\frac{-1}{2}\), ta có:
\(\left(\frac{-1}{2}\right)^2+4.\left(\frac{-1}{2}\right)+3=\frac{1}{4}+\left(-2\right)+3=\frac{5}{4}\)
b. Ta có:
\(x^2+4x+3=0\)
\(\Rightarrow x^2+x+3x+3=0\)
\(\Rightarrow\left(x^2+x\right)+\left(3x+3\right)=0\)
\(\Rightarrow x\left(x+1\right)+3\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x+1=0\\x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\x=-3\end{cases}}}\)
Vậy \(x=-1;x=-3\)
tinh gia tri cua bieu thuc A= x + xy - y - x - 4xy - 3y tai x= 0,5 y= -4
Ta có: A = x + xy - y - x - 4xy - 3y
A = (x - x) + (xy - 4xy) - (y + 3y)
A = -3xy - 4y
Thay x = 0,5; y = -4 vào biểu thức A, ta được:
A = -3. 0,5. (-4) - 4.(-4) = 6 + 16 = 22
Vậy giá trị của biểu thức A = 22 tại x = 0,6; y = -4
cho bieu thuc A=(x-√x/√-1+1):(x+√x/√x+1) (x≥0;x≠1)
a. tim x de bieu thuc A co nghia ? rut gon A?
b. tinh gia tri cua bieu thuc A tai x =7+4√3
lm giup mik nha
căn bậc hai không có số âm
\(\sqrt{-1}\) đó
a) ĐK : x ≥ 0 ; x ≠ 1
A=\(\frac{x-\sqrt{x}}{\sqrt{x}-1}:\frac{x+\sqrt{x}}{\sqrt{x}+1}\)
=\(\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}:\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)
=\(\sqrt{x}:\sqrt{x}\)
=1
Vậy A=1 với x ≥ 0 ; x ≠ 1
b) Vì A=1 nên không thể thay x
cho bieu thuc A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)
a. tim x de bieu thuc A co nghia ?rut gon A ?
b. tinh gia tri cua bieu thuc A tai x=7+4√3
a. A có nghĩa khi \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-1\ne\\\frac{x+\sqrt{x}}{\sqrt{x}+1}\ne0\end{matrix}\right.0\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
A\(=\frac{x-\sqrt{x}+\sqrt{x}-1}{\sqrt{x}-1}.\frac{\sqrt{x}+1}{x+\sqrt{x}}\)\(=\frac{x-1}{\sqrt{x}-1}.\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}.\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}\)
b. \(x=7+4\sqrt{3}\Rightarrow\)A = \(\frac{\sqrt{7+4\sqrt{3}}+1}{\sqrt{7+4\sqrt{3}}}=\frac{\sqrt{\left(2+\sqrt{3}\right)^2}+1}{\sqrt{\left(2+\sqrt{3}\right)^2}}=\frac{3+\sqrt{3}}{2+\sqrt{3}}\)
tinh gia tri cua cac bieu thuc sau:
a,x(x-6)-y(6-x) tai x=2006,y=2002
b,5x(x-y)-y(x-y) tai x=60,y=5
a)x(x-6) - y(6-x) tại x=2006, y=2002
ta có: x(x-6) - y(6-x)
=x(x-6)+y(x-6)
=(x-6)(x+y)*
thay x=2006, y=2002 vào * ta có
(2006-6)(2006+2002)= 2000 .4008=8016000
b) 5x(x-y)-y(x-y) tại x=60, y=5
ta có: 5x(x-y)-y(x-y)
=(x-y)(5x-y)
thay x=60, y=5 ta có
(60-5)(5.60-5) =55.(300-5)=55.295=16225
cho bieu thuc A =\(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)
(x≥0;x≠1)
a. tim x de bieu thuc A co nghia ?rut gon A ?
b. tinh gia tri bieu thuc A tai x=7+4√3
a/ Ta có: A=\(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)=\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}+1\right):\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right)\)
\(=\left(\sqrt{x}+1\right):\left(\sqrt{x}\right)=\frac{\sqrt{x}+1}{\sqrt{x}}\)
b/ Ta có :\(x=7+4\sqrt{3}=3+4\sqrt{3}+4=\left(\sqrt{3}+2\right)^2
\)
\(\Rightarrow\sqrt{x}=|\sqrt{3}+2|=\sqrt{3}+2\)
Thay x vào A ta có:
A\(=\frac{\sqrt{x}+1}{\sqrt{x}}=\frac{\sqrt{3}+2+1}{\sqrt{3}+2}=\frac{\sqrt{3}+3}{\sqrt{3}+2}=\frac{\left(\sqrt{3}+3\right)\left(2-\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=\frac{3-\sqrt{3}}{1}=3-\sqrt{3}\)