\(x^2+\left(4m+1\right)x+2\left(m-4\right)=0\)
Tìm m để \(B=\left(x_1-x_2\right)^2\) đạt GTNN.
Cho pt \(x^2-\left(2m+5\right)x+2m+1=0\). Tìm m để pt có 2 nghiệm \(x_1\), \(x_2\) thỏa mãn \(P=\left|\sqrt{x_1}-\sqrt{x_2}\right|\) đạt GTNN.
\(\Delta=4m^2+20m+25-8m-4=4m^2+12m+21=\left(2m+3\right)^2+12>0\)
với mọi m => pt có 2 nghiệm phân biệt x1 và x2
theo Viet (điều kiện m > -1/2)
\(\left\{{}\begin{matrix}x1+x2=2m+5\\x1.x2=2m+1\end{matrix}\right.\)
\(p^2=x1-2\left|\sqrt{x1.x2}\right|+x2=2m+5-2\sqrt{2m+1}=\left(\sqrt{2m+1}-1\right)^2+3\ge3< =>p\ge\sqrt{3}\)
dấu bằng xảy ra khi \(\sqrt{2m+1}=1< =>m=0\left(tm\right)\)
Gọi \(x_1;x_2\) là 2 nghiệm của phương trình \(x^2-2\left(2m+1\right)x+4m^2+4m=0\) Tìm m để \(\left|x_1-x_2\right|=x_1+x_2\)
\(\Delta'=\left(2m+1\right)^2-\left(4m^2+4m\right)=1>0;\forall m\Rightarrow\) pt luôn có 2 nghiệm pb
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(2m+1\right)\\x_1x_2=4m^2+4m\end{matrix}\right.\)
\(\left|x_1-x_2\right|=x_1+x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2\ge0\\\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(2m+1\right)\ge0\\-2x_1x_2=2x_1x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ge-\dfrac{1}{2}\\x_1x_2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ge-\dfrac{1}{2}\\4m^2+4m=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m=0\\mm=-1< -\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)
áp dụng vi et
x1+x2=\(\dfrac{-b}{a}=4m+2\)
x1.x2=\(\dfrac{c}{a}=4m^2+4m\)
ta có :
\(|x_1-x_2|=x_1+x_2\)
<->(x1-x2)2=(x1+x2)2
<->(x1+x2)2-4x1.x2=(4m+2)2
<->(4m+2)2-4(4m2+4m)=(4m+2)2
<->16m2+4+16m-16m2-16m=16m2+4+16m
<->16m2+16m=0
<->16m(m+1)=0
<->m=0
m=-1
vậy m =0 và m=-1 thì tm hệ thức trên
Tìm m để phương trình: \(3x^2+4\left(m-1\right)x+m^2-4m+1=0\) có hai nghiệm phân biệt \(x_1,x_2\) thỏa mãn: \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{1}{2}\left(x_1+x_2\right)\)
Để pt có 2 nghiệm pb khác 0:
\(\left\{{}\begin{matrix}\Delta'=4\left(m-1\right)^2-3\left(m^2-4m+1\right)>0\\x_1x_2=\dfrac{m^2-4m+1}{3}\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2+4m+1>0\\m^2-4m+1\ne0\end{matrix}\right.\) (1)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{4\left(m-1\right)}{3}\\x_1x_2=\dfrac{m^2-4m+1}{3}\end{matrix}\right.\)
\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{1}{2}\left(x_1+x_2\right)\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=\dfrac{1}{2}\left(x_1+x_2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1+x_2=0\\x_1x_2=2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{4\left(m-1\right)}{3}=0\\\dfrac{m^2-4m+1}{3}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-1\\m=5\end{matrix}\right.\)
Thế vào hệ điều kiện (1) kiểm tra chỉ có \(\left[{}\begin{matrix}m=1\\m=5\end{matrix}\right.\) thỏa mãn
Cho phương trình \(x^2-2\left(m+1\right)+2m-3=0\)
Tìm các giá trị của m để phương trình có 2 nghiệm phân biệt thoản mãn biểu thức \(P=\left|\dfrac{x_1+x_2}{x_1-x_2}\right|\)
đạt GTNN
\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0\) ; \(\forall m\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=2m-3\end{matrix}\right.\)
Ta có: \(P=\left|\dfrac{x_1+x_2}{x_1-x_2}\right|\ge0\)
\(\Rightarrow P_{min}=0\) khi \(x_1+x_2=0\Leftrightarrow m=-1\)
Đề là yêu cầu tìm max hay min nhỉ? Min thế này thì có vẻ là quá dễ
Tìm m để phương trình \(\left(m+1\right)x^2-2\left(m-1\right)x+m^2+4m-5=0\) có đúng hai nghiệm \(x_1,x_2\) thỏa mãn \(2< x_1< x_2\) .
Cho phường trình: \(x^2-2\left(2m+1\right)x+4m^2+4m=0\)
Gọi x1; x2 là 2 nghiệm của phương trình. Tìm m để: \(\left|x_1-x_2\right|=x_1+x_2\)
\(a=1;b=-2\left(2m+1\right);c=4m^2+4m;b'=\dfrac{b}{2}=-\left(2m+1\right)\)
\(\Delta'=b'^2-ac=\left[-\left(2m+1\right)\right]^2-1.\left(4m^2+4m\right)\\ =4m^2+4m+1-4m^2-4m\\ =1>0\)
\(\Leftrightarrow\Delta'>0\) mà \(a=1\ne0\left(luônđúng\right)\)
=> pt luôn có 2 no pb x1;x2
ad đl viet có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(2m+1\right)=4m+2\\x_1x_2=\dfrac{c}{a}=4m^2+4m\end{matrix}\right.\)
ta có: \(\left|x_1-x_2\right|=x_1+x_2\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=\left(x_1+x_2\right)^2\\ \Leftrightarrow\left(4m+2\right)^2-4\left(4m^2+4m\right)=\left(4m+2\right)^2\\ \Leftrightarrow-4\left(4m^2+4m\right)=0\\ \Leftrightarrow4m\left(m+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=-1\left(loại\right)\end{matrix}\right.\)
Thảo luận 1
đầu tiên cho denta > 0 để có 2 nghiệm đã ta thấy denta'=m^2+(m-1)^2 luôn luôn duơng nên có 2 no theo Viet ta có S= x1+x2=-b/a=2(m+1) P=x1.x2=c/a=4m-m^2 Theo GT A=/x1-x2/ min tuơng đuơng A^2=(x1-x2)^2 min=(x1+x2)^2-4x1.x2 ráp tổng tích vào, làm gọn ta có A^2= 2(m-1)^2+4m^2 mà 4m^2>=0, mim khi m=0, A^2=2 2(m-1)^2>=0, min khi m=1, A^2=4 Chọn A^2min=2, suy ra Amin= căn 2
Thảo luận 2
A=/x1-x2/ => A^2 = /x1-x2/^2 = (x1-x2)^2 => Amin khi (x1-x2)^2 min = (x1+x2)^2 - 4x1x2 min Ta co: x1 + x2 = 2(m+1) ; x1x2 = 4m-m^2. Thay vao: 4(2m^2 -2m+1) = 8 (m-1/2)^2 + 2 >= 2. A^2 >= 2 A = 0) hay A >= can2. Vậy Amin = can 2
Cho phương trình \(x^2-mx+2=0\) tìm m để phương trình có 2 nghiệm phân biệt để biểu thức \(\left(x_1+x_2\right)^4-17\left(x_1+x_2\right)^2x_1^2x_2^2-6\left(x_1+x_2\right)x_1^3x_2^3\)đạt giá trị nhỏ nhất
Cho phương trình : \(x^2+\left(3m+2\right)x+3m=0\).
Tìm m để phương trình có hai nghiệm phân biệt \(x_1,x_2\) sao cho biểu thức \(Q=\left(x_1+1\right)^4+\left(x_2+1\right)^4\) đạt giá trị nhỏ nhất .
\(\Delta=\left(3m+2\right)^2-12m=9m^2+4>0\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-3m-2\\x_1x_2=3m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+1+x_2+1=-3m\\x_1x_2+x_1+x_2+1=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+1+x_2+1=-3m\\\left(x_1+1\right)\left(x_2+1\right)=-1\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x_1+1=a\\x_2+1=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=-3m\\ab=-1\end{matrix}\right.\)
\(Q=a^4+b^4\ge2a^2b^2=2\)
Dấu "=" xảy ra khi \(a^2=b^2\Rightarrow\left[{}\begin{matrix}a=b\left(loại\right)\\a=-b\end{matrix}\right.\)
\(\Rightarrow-3m=0\Rightarrow m=0\)
Cho phương trình \(x^2+\left(1-4m\right)x+4m^2-2m=0\) với m là tham số. Tìm giá trị của m để phương trình đã cho có hai nghiệm phân biệt \(x_1,x_2\left(x_1< x_2\right)\) sao cho \(\left|x_1\right|-3\left|x_2\right|=0\)