NM

Tìm m để phương trình: \(3x^2+4\left(m-1\right)x+m^2-4m+1=0\) có hai nghiệm phân biệt \(x_1,x_2\) thỏa mãn: \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{1}{2}\left(x_1+x_2\right)\)

MY
8 tháng 7 2021 lúc 11:25

pt sai 

Bình luận (1)
NL
8 tháng 7 2021 lúc 15:19

Để pt có 2 nghiệm pb khác 0:

\(\left\{{}\begin{matrix}\Delta'=4\left(m-1\right)^2-3\left(m^2-4m+1\right)>0\\x_1x_2=\dfrac{m^2-4m+1}{3}\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2+4m+1>0\\m^2-4m+1\ne0\end{matrix}\right.\) (1)

Theo hệ thức Viet:  \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{4\left(m-1\right)}{3}\\x_1x_2=\dfrac{m^2-4m+1}{3}\end{matrix}\right.\)

\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{1}{2}\left(x_1+x_2\right)\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=\dfrac{1}{2}\left(x_1+x_2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1+x_2=0\\x_1x_2=2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{4\left(m-1\right)}{3}=0\\\dfrac{m^2-4m+1}{3}=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-1\\m=5\end{matrix}\right.\) 

Thế vào hệ điều kiện (1) kiểm tra chỉ có \(\left[{}\begin{matrix}m=1\\m=5\end{matrix}\right.\) thỏa mãn

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
LT
Xem chi tiết
GC
Xem chi tiết
DH
Xem chi tiết
HL
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
DN
Xem chi tiết
DN
Xem chi tiết