Những câu hỏi liên quan
KA
Xem chi tiết
TT
22 tháng 9 2021 lúc 11:08

3) a)Số hạng thứ 100 của tổng : \(\left(100-1\right).3+5=302\)

b)Tổng số 100 số hạng đầu tiên : \(302+5.100:2=15350\)

 

Bình luận (0)
TB
Xem chi tiết
BL
Xem chi tiết
PA
10 tháng 7 2017 lúc 12:01

Câu 1: 

a) Số hạng thứ 100 của tổng là: 

(100-1) * 3 + 5 = 302

b) Tổng 100 số hạng đầu tiên là: 

(302 + 5) * 100 : 2 = 15350

                  Đ/S: a) 302

                         b) 15350

Câu 2:

a) Số hạng thừ 50 của tổng là: 

(50 - 1) * 5 + 7 =252

b) Tổng 50 số hạng đầu là:

(252 + 7) * 50 : 2 =6475

                   Đ/S: a) 252

                          b) 6475

Bình luận (0)
HL
10 tháng 9 2017 lúc 9:07

s=5+8+11+14+..

nhận xét :5+3=8

               8+3=11

                11+3=14

...............

vậy => dãy số trên là dãy số cách đều 3 đv

giả sử coi số hạng đứng thứ 100 của dãy là số hạng cuối cùng của dãy và là x.ta có:

(x-5):3+1=100

(x-5):3=100-1

(x-5):3=99

x-5=99x3

x-5=297

x=297+5

x=302

vậy số hạng đứng thứ 100 của dãy là: 302

b) ta có dãy :5+8+11+14+..

(302+5) x100:2=15350

cậu giải tương tự như trên nhá

công thức tính số hạng thứ n là:(số cuối -số đầu):khoảng cách +1

---------------------------------tính tổng:(sc+sđ)x số số hạng :2

Bình luận (0)

có ai nghe tôi nói khong vaayjyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy!

Bình luận (1)
TB
Xem chi tiết
H24
25 tháng 6 2021 lúc 19:44

`A)1/(1.2)+1/(2.3)+....+1/(100.101)`

`=1-1/2+1/2-1/3+...+1/100-1/101`

`=1-1/101=100/101`

Bình luận (0)
NT
25 tháng 6 2021 lúc 19:58

a) Ta có: \(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{100\cdot101}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{100}-\dfrac{1}{101}\)

\(=1-\dfrac{1}{101}=\dfrac{100}{101}\)

Bình luận (0)
TT
Xem chi tiết
NL
10 tháng 1 2021 lúc 18:08

Ta sử dụng công thức truy hồi để tìm các số hạng tiếp theo trong dãy:

\(1;3;2;-1;-3;-2;1;3;2;-1;-3;-2...\)

Từ đó ta nhận thấy quy luật:

\(u_n=1\) nếu \(n=6k+1\)

\(u_n=3\) nếu \(n=6k+2\)

\(u_n=2\) nếu \(n=6k+3\)

\(u_n=-1\) nếu \(n=6k+4\)

\(u_n=-3\) nếu \(n=6k+5\)

\(u_n=-2\) nếu \(n=6k\)

Đồng thời:

\(u_3=u_2-u_1\)

\(u_4=u_3-u_2\)

...

\(u_{99}=u_{98}-u_{97}\)

\(u_{100}=u_{99}-u_{98}\)

Cộng vế với vế:

\(u_3+u_4+...+u_{100}=u_{99}-u_1\)

\(\Leftrightarrow u_1+u_2+...+u_{100}=u_2+u_{99}=3+u_{6.16+3}=3+2=5\)

Bình luận (0)
OP
Xem chi tiết
PH
Xem chi tiết
PH
Xem chi tiết
NH
20 tháng 9 2024 lúc 12:40

S = \(\dfrac{4}{3}\).\(\dfrac{9}{8}\).\(\dfrac{16}{15}\).\(\dfrac{25}{24}\).\(\dfrac{36}{35}\)....

S = \(\dfrac{2^2}{1.3}\).\(\dfrac{3^2}{2.4}\).\(\dfrac{4^2}{3.5}\).\(\dfrac{5^2}{4.6}\).\(\dfrac{6^2}{5.7}\)...

Phân số thứ 100 của dãy số trên là: \(\dfrac{101^2}{100.102}\)

Tích của 100 số đầu tiên của dãy trên là:

S = \(\dfrac{2^2}{1.3}\).\(\dfrac{3^2}{2.4}\).\(\dfrac{4^2}{3.5}\).\(\dfrac{5^2}{4.6}\).\(\dfrac{6^2}{5.7}\)....\(\dfrac{101^2}{100.102}\)

S = \(\dfrac{\left(1.2.3...100.101\right)\times\left(2.3.4.5...101\right)}{\left(1.2.3.4...100\right)\times\left(3.4.5....101.102\right)}\)

S = \(\dfrac{101.2}{1.102}\)

S = \(\dfrac{101}{51}\)

Bình luận (0)
HT
Xem chi tiết
.
25 tháng 6 2021 lúc 20:16

A) Số hạng thứ 100 số hạng của dãy là: \(\frac{1}{100.101}\)

Tổng 100 số hạng đầu tiên của dãy:

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{100.101}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{100}-\frac{1}{101}\)

\(=1-\frac{1}{101}=\frac{101}{101}-\frac{1}{101}=\frac{100}{101}\)

B) Ta có: \(\frac{1}{6}=\frac{1}{1.6};\frac{1}{66}=\frac{1}{6.11};\frac{1}{176}=\frac{1}{11.16}...\)

\(\Rightarrow\) Số hạng thứ 100 của dãy là: \(\frac{1}{496.501}\)

Tổng 100 số hạng đầu tiên của dãy là:

\(\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{496.501}\)

\(=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{496}-\frac{1}{501}\)

\(=1-\frac{1}{501}=\frac{501}{501}-\frac{1}{501}=\frac{500}{501}\)

Bình luận (0)
 Khách vãng lai đã xóa