c4
cho pt ẩn x: \(x^2-2x-m^2-4=0\)(1)
a/ giải pt đã cho khi m=\(\dfrac{1}{2}\)
b/ chứng minh pt luôn có 2 nghiệm phân biệt vs mọi m
c/ tính giá trị của m để pt (1) có 2 nghiệm x1,x2 sao cho 2x1,x2(2-3x1)=2
a: Khi m=1/2 thì \(x^2-2x-\dfrac{1}{4}-4=0\)
\(\Leftrightarrow x^2-2x-\dfrac{17}{4}=0\)
\(\Leftrightarrow4x^2-8x-17=0\)
\(\Leftrightarrow\left(2x-2\right)^2=21\)
hay \(x\in\left\{\dfrac{\sqrt{21}+2}{2};\dfrac{-\sqrt{21}+2}{2}\right\}\)
b: \(\text{Δ}=\left(-2\right)^2-4\left(-m^2-4\right)\)
\(=4+4m^2+16=4m^2+20>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
cho pt: x2 -2(m-1)x-3m-1=0
a) tìm m để pt có nghiệm x1= -5 .tính x2
b) chứng tỏ pt luôn có nghiệm với mọi giá trị của m
giải giùm e câu c vs ạ
c4
cho pt ẩn x: x2−2x−m2−4=0x2−2x−m2−4=0(1)
a/ giải pt đã cho khi m=1212
b/ chứng minh pt luôn có 2 nghiệm phân biệt vs mọi m
c/ tính giá trị của m để pt (1) có 2 nghiệm x1,x2 sao cho 2x1,x2(2-3x1)=2
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ bên trái khung soạn thảo) để được hỗ trợ tốt hơn.
Cho pt: x2-(2m+1)x-4=0. Chứng tỏ pt luôn có 2 nghiệm x1, x2 với mọi m.
help mình nha, thanks mng nhiều nhé!
a=1; b=-2m-2; c=-4
Vì ac<0
nên phương trình luôn có hai nghiệm phân biệt
Ptr có: `\Delta = b^2 - 4ac = [-(2m + 1)]^2 - 4 . (-4)`
`= ( 2m + 1)^2 + 16 > 0 AA m`
`=> \Delta > 0 AA m`
Vật ptr luôn có `2` nghiệm `x_1 , x_2` với mọi `m`
x2-2(m-1)x+2m-3=0
- chứng tỏ rằng pt luôn có nghiệm với mọi giá trị của m
-gọi x(1) , x(2) là các nghiệm của pt trên . tìm m để x thoả mãn đẳng thức x12 = 2x(2)+1
a) Ta có: \(\Delta=\left(-4\right)^2-4\cdot1\cdot\left(2m-3\right)=16-4\left(2m-3\right)\)
\(\Leftrightarrow\Delta=16-8m+12=-8m+28\)
Để phương trình có hai nghiệm x1;x2 phân biệt thì \(-8m+28>0\)
\(\Leftrightarrow-8m>-28\)
hay \(m< \dfrac{7}{2}\)
Với \(m< \dfrac{7}{2}\) thì phương trình có hai nghiệm phân biệt x1;x2
nên Áp dụng hệ thức Viet, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-4\right)}{1}=4\\x_1\cdot x_2=\dfrac{2m-3}{1}=2m-3\end{matrix}\right.\)
Để phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau thì
\(\left\{{}\begin{matrix}m< \dfrac{7}{2}\\4+2m-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\m=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m=-\dfrac{1}{2}\)
Vậy: Khi \(m=-\dfrac{1}{2}\) thì phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau
cho pt x2 - 2mx-1=0(m là tham số)
a. chứng tỏ rằng pt luôn có 2 nghiệm phân biệt
b. tim m để pt có hai nghiệm thoả x12+x22=7
a, đenta' = m^2+1>0 với mọi m
=>pt luôn có 2 nghiệm phân biệt với mọi m
b, theo viet ta có:
x12+x22=7
<=>(x1+x2)2-2x1x2=7
=>(2m)2+2=7
=>4m2=5
=> m2=5/4
=>m=căn(5)/2 hoặc m=-căn(5)/2
Cho pt - x^2 +2(m-1)x+m^2+1=0 Chứng tỏ pt luôn có nghiệm vs mọi m Gọi x1 x2 là nghiệm của phương trình trên tìm giá trị của m để 1:x1+1:x2 ko âm
\(\Delta'=\left(m-1\right)^2+m^2+1>0\) ;\(\forall m\Rightarrow\) phương trình luôn có nghiệm với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\left(2m+1\right)\\x_1x_2=-m^2-1\end{matrix}\right.\)
Đặt \(A=\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1+x_2}{x_1x_2}\)
\(A=\dfrac{2m+1}{m^2+1}\ge0\Leftrightarrow2m+1\ge0\Rightarrow m\ge-\dfrac{1}{2}\)
Cho pt:
2x2 + mx + m - 3 = 0
Chứng minh rằng pt có 2 nghiệm phân biệt
Cho pt:
x2 - 2(2m-1)x + 3m2 - 4 = 0
Chứng minh rằng pt luôn có nghiệm với mọi m
Tìm m để x12 + x22 - x1x2 = 5
+) Cho pt: 2x2 + mx + m - 3 = 0. Chứng minh rằng pt có 2 nghiệm phân biệt
Ta có: \(a=2;b=m;c=m-3.\)
\(\text{Δ}=b^2-4ac=m^2-4.2.\left(m-3\right)=m^2-8m+24-\left(m-4\right)^2+8\)
=> đpcm
+) Cho pt: x2 - 2(2m-1)x + 3m2 - 4 = 0. Chứng minh rằng pt luôn có nghiệm với mọi m; Tìm m để x12 + x22 - x1x2 = 5 (*)
Ta có: \(a=1;b'=-\left(2m-1\right);c=3m^2-4\)
\(\text{Δ′}=-\left(2m-1\right)^2-1.\left(3m^2-4\right)=4m^2-4m+1-3m^2+4=m^2-4m+5=\left(m-2\right)^2+1\)
=> Pt có nghiệm với mọi m
ta lại có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m-1\left(1\right)\\x_1x_2=\frac{c}{a}=3m^2-4\left(2\right)\end{cases}}\)
(*)\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=5\)
thay (1) và (2) vào (*) ta có:
\(\left(2m-1\right)^2-3\left(3m^2-4\right)=5\)
\(\Leftrightarrow4m^2-4m+1-9m^2+12=5\)
\(\Leftrightarrow5m^2+4m-8=0\)
\(\Leftrightarrow\begin{cases}m=\frac{-2+2\sqrt{11}}{2}\\m=\frac{-2-2\sqrt{11}}{2}\end{cases}\)
Vậy \(m=\frac{-2+2\sqrt{11}}{2}\)hoặc \(m=\frac{-2-2\sqrt{11}}{2}\)thoả mãn x12 + x22 - x1x2 = 5
(Câu này mình nghĩ là tìm m để x12 + x22 + x1x2 = 5 thì đúng hơn, nếu đúng thì bạn bình luận để mình làm nhé!)
Học tốt nhé!
cho pt : m(x-2)2X(x+9)+x4-32=0. Chứng minh pt có ít nhất 2 nghiệm với mọi m
Mọi người giải thích hộ em luôn với ạ!
TH1: \(m=-1\) thỏa mãn (dễ dàng kiểm tra các giá trị \(f\left(-1\right)>0\) ; \(f\left(0\right)< 0\) ; \(f\left(3\right)>0\) nên pt có ít nhất 2 nghiệm thuộc (-1;0) và (0;3)
TH2: \(m>-1\):
\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}x^4\left[m\left(1-\dfrac{2}{x}\right)^2\left(1+\dfrac{9}{x}\right)+1-\dfrac{32}{x^4}\right]=+\infty.\left(m+1\right)=+\infty>0\)
\(\Rightarrow\) Luôn tồn tại 1 giá trị \(x=a\) đủ lớn sao cho \(f\left(a\right)>0\)
\(f\left(0\right)=-32< 0\Rightarrow f\left(a\right).f\left(0\right)< 0\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm dương
\(f\left(-9\right)=9^4-32>0\Rightarrow f\left(-9\right).f\left(0\right)< 0\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm âm thuộc \(\left(-9;0\right)\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 2 nghiệm
TH3: \(m< -1\) tương tự ta có: \(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}=+\infty.\left(m+1\right)=-\infty\)
\(\Rightarrow\) Luôn tồn tại 1 giá trị \(x=a>0\) đủ lớn và \(x=b< 0\) đủ nhỏ sao cho \(\left\{{}\begin{matrix}f\left(a\right)< 0\\f\left(b\right)< 0\end{matrix}\right.\)
Lại có \(f\left(-9\right)=9^4-32>0\) \(\Rightarrow\left\{{}\begin{matrix}f\left(-9\right).f\left(a\right)< 0\\f\left(-9\right).f\left(b\right)< 0\end{matrix}\right.\)
\(\Rightarrow\) Pt luôn có ít nhất 2 nghiệm thuộc \(\left(-\infty;-9\right)\) và \(\left(-9;+\infty\right)\)
Vậy pt luôn có ít nhất 2 nghiệm với mọi m