: Tìm giao điểm của y = 2x -1 với y = x+ 2
Tìm toàn độ giao điểm của mỗi đồ thị hàm số sau với 2 trục tọa độ
a) y=2x-3 b) y=\(\dfrac{-3}{4}\)x c) y=2x2
d) y= \(\dfrac{x+1}{x-2}\) e) y=x-2+\(\dfrac{1}{x}\) f) y=x2+2x-5
a:Đặt (d1): y=2x-3
Tọa độ giao điểm của (d1) với trục Ox là:
\(\left\{{}\begin{matrix}y=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\2x=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=0\end{matrix}\right.\)
Tọa độ giao điểm của (d1) với trục Oy là:
\(\left\{{}\begin{matrix}x=0\\y=2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\cdot0-3=0-3=-3\end{matrix}\right.\)
b: Đặt (d2): \(y=-\dfrac{3}{4}x\)
Tọa độ giao điểm của (d2) với trục Ox là:
\(\left\{{}\begin{matrix}y=0\\-\dfrac{3}{4}x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Tọa độ giao điểm của (d2) với trục Oy là:
\(\left\{{}\begin{matrix}x=0\\y=-\dfrac{3}{4}x=-\dfrac{3}{4}\cdot0=0\end{matrix}\right.\)
c: Đặt \(\left(d3\right):y=2x^2\)
Tọa độ giao điểm của (d3) với trục Ox là:
\(\left\{{}\begin{matrix}2x^2=0\\y=2x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2=0\\y=2x^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=0\\y=2\cdot0^2=0\end{matrix}\right.\)
Tọa độ giao điểm của (d3) với trục Oy là:
\(\left\{{}\begin{matrix}x=0\\y=2x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\cdot0^2=0\end{matrix}\right.\)
d: Đặt (d4): \(y=\dfrac{x+1}{x-2}\)
ĐKXĐ: x<>2
Tọa độ giao điểm của (d4) với trục Ox là:
\(\left\{{}\begin{matrix}y=0\\y=\dfrac{x+1}{x-2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\)
Tọa độ giao điểm của (d4) với trục Oy là:
\(\left\{{}\begin{matrix}x=0\\y=\dfrac{x+1}{x-2}=\dfrac{0+1}{0-2}=\dfrac{1}{-2}=-\dfrac{1}{2}\end{matrix}\right.\)
e: Đặt (d5): \(y=x-2+\dfrac{1}{x}\)
ĐKXĐ: x<>0
Vì hàm số không đi qua điểm có hoành độ là x=0 nên (d5) sẽ không cắt trục Oy
Tọa độ giao điểm của (d5) với trục Ox là:
\(\left\{{}\begin{matrix}y=0\\x-2+\dfrac{1}{x}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-2x+1=0\\y=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
f: Đặt (d6): \(y=x^2+2x-5\)
Tọa độ giao điểm của (d6) với trục Oy là:
\(\left\{{}\begin{matrix}x=0\\y=x^2+2x-5=0^2+2\cdot0-5=-5\end{matrix}\right.\)
Tọa độ giao điểm của (d6) với trục Ox là:
\(\left\{{}\begin{matrix}y=0\\x^2+2x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x^2+2x+1-6=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\\left(x+1\right)^2=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=0\\x+1=\sqrt{6}\end{matrix}\right.\\\left\{{}\begin{matrix}y=0\\x+1=-\sqrt{6}\end{matrix}\right.\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}\left\{{}\begin{matrix}y=0\\x=\sqrt{6}-1\end{matrix}\right.\\\left\{{}\begin{matrix}y=0\\x=-\sqrt{6}-1\end{matrix}\right.\end{matrix}\right.\)
Vẽ và tìm tọa độ giao điểm của:
1.y=x và y=2x-4 2.y=2x-1 và y=x+1
3.y=-2x-1 và y=x-4 4.y=-x+2 và y=x-1
5.y=-2x+3 và y=-x+1 6.y=-x+1 và y=x-3
7.y=2/3x + 1 và y=-1/2x-2 8.y=-x-2 và y=-2/3x-1
9.y=2x và y=x+2 10.y=-2x+5 và y=2x+1
11.y=-2x+3 và y=1/2x-2 12.y=-1/2x+1 và y=x-5
13.y=x-2 và y=1/3x 14.y=2/3x+1 và y=x
2: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x-1=x+1\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
cho hàm số y=(m-2) x+3 (d1)
a, vẽ đồ thị hàm số khi m=3
b,với m=3 tìm tọa độ giao điểm của 2 đường thẳng (d1) và (d2): y=2x-3
c,với m=3 tìm tọa độ giao điểm của 2 đường thẳng (d1) và (d2): y=2x+2
`(d_1):y=2x-2`
`(d_2) :y= -4/3 x-2`
`(d_3) :y = 1/3 x+3`
Gọi giao điểm của `(d_3)` với `(d_1)` và `(d_2)` là `A` và `B`. Tìm tọa độ `A, B
Tọa độ A là:
\(\left\{{}\begin{matrix}2x-2=\dfrac{1}{3}x+3\\y=2x-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{5}{3}x=5\\y=2x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5:\dfrac{5}{3}=3\\y=2\cdot3-2=6-2=4\end{matrix}\right.\)
Vậy: A(3;4)
Tọa độ B là:
\(\left\{{}\begin{matrix}-\dfrac{4}{3}x-2=\dfrac{1}{3}x+3\\y=\dfrac{1}{3}x+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-\dfrac{5}{3}x=5\\y=\dfrac{1}{3}x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=\dfrac{1}{3}\cdot\left(-3\right)+3=3-1=2\end{matrix}\right.\)
Vậy: B(-3;2)
cho hàm số y = -2x^2 (1)
a) với giá trị nào của x thì hàm số (1) đồng biến
b) tìm tọa độ giao điểm của ddg thẳng y = -3x -5 với đths (1)
a.
Do \(a=-2< 0\Rightarrow\)hàm số (1) đồng biến khi \(x< 0\)
b.
Phương trình hoành độ giao điểm:
\(-2x^2=-3x-5\Leftrightarrow2x^2-3x-5=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\Rightarrow y=-2\\x=\dfrac{5}{2}\Rightarrow y=-\dfrac{25}{2}\end{matrix}\right.\)
Hai đồ thị cắt nhau tại 2 điểm có tọa độ: \(\left(-1;-2\right)\) và \(\left(\dfrac{5}{2};-\dfrac{25}{2}\right)\)
Cho hàm số y = 2x2 - 6x - m + 1 (*). Tìm m để đường thẳng y = x + 1 cắt đồ thị (*) tại 2 điểm phân biệt và tìm tọa độ trung điểm của đoạn thẳng với giao điểm đó.
Bài 1:Cho 2 đương thẳng 2x-y=-6vaf x+y=3.
a)Tìm toạ độ giao điểm M của 2 đường thẳng trên.
b)Gọi giao điểm của 2 đường thẳng trên với trục hoành theo thứ tự là Avà B. Tính diện tích tam giác MAB
Vẽ đồ thị các hàm số sau đây và tìm giao điểm của chúng với các trục tọa độ.
A)y =x + 1 nếu x ≥ 2
4 − x nếu x ≤ 2
B) y = |2x − 3|
b: \(y=0\Leftrightarrow\left|2x-3\right|=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
\(x=0\Leftrightarrow y=3\)
1/ Cho hàm số: y= 2x+3
a/ tìm giao điểm ĐT hàm số với trục hoành
b/ tìm giao điểm Đths với trục tung
c/ tìm giao điểm đths với đường thẳng y= x+1
a) Gọi A là giao của đths với Ox => y A = 0
=> yA = 2xA + 3 =0 => xA = -3/2
Vậy A (-3/2; 0)
b) gọi B là giao của đths với Oy => xB = 0
=> yB = 2xB + 3 =2.0 + 3 = 3
Vậy B (0;3)
c) Phương trình hoành độ giao điểm: 2x +3 = x + 1
<=> 2x - x = 1 - 3
<=> x = -2
=> y = -2 + 1 = -1
Vậy toạ độ giao điểm là (-2;-1)