a,b là số hữu tỉ cho pt :\(^{x^2+ax+b=0}\)tìm a,b để pt trên có nghiệm là\(\sqrt{2}-1\)
Tìm các số hữu tỉ a,b sao cho x=$\sqrt{2}$+1/$\sqrt{2}$-1 là nghiệm của pt: x^3+ax^2+bx+1=0
Tìm các nghiệm của pt (ax^2+bx+c)(cx^2+bx+a)=0 biết a,b,c là các số hữu tỉ (a,c khác 0) và x=($\sqrt{2}$+1)^2 là một nghiệm của pt này
1, Xét pt x2 - m2x + 2m + 2 = 0 (ẩn x). Tìm số nguyên dương m để pt có nghiệm nguyên
2,cho pt x3 + ax2 + bx - 1 = 0
a, tìm các số hữu tỉ a và b để pt có nghiệm \(x=2-\sqrt{3}\)
b, Với a,b vừa tìm đc ở câu a, Gọi x1 ; x2 ; x3 là 3 nghiệm của pt trên
Tính \(S=\frac{1}{x_1^5}+\frac{1}{x_2^5}+\frac{1}{x_3^5}\)
Không biết câu 1 đề là m2x hay là mx ta ? Bởi nếu đề như vậy đenta sẽ là bậc 4 khó thành bình phương lắm
Làm câu 2 trước vậy , câu 1 để sau
a, pt có nghiệm \(x=2-\sqrt{3}\)
\(\Rightarrow pt:\left(2-\sqrt{3}\right)^3+a\left(2-\sqrt{3}\right)^2+b\left(2-\sqrt{3}\right)-1=0\)
\(\Leftrightarrow26-15\sqrt{3}+7a-4a\sqrt{3}+2b-b\sqrt{3}-1=0\)
\(\Leftrightarrow\sqrt{3}\left(4a+b+15\right)=7a+2b+25\)
Vì VP là số hữu tỉ
=> VT là số hữu tỉ
Mà \(\sqrt{3}\)là số vô tỉ
=> 4a + b + 15 = 0
=> 7a + 2b + 25 = 0
Ta có hệ \(\hept{\begin{cases}4a+b=-15\\7a+2b=-25\end{cases}}\)
Dễ giải được \(\hept{\begin{cases}a=-5\\b=5\end{cases}}\)
b, Với a = -5 ; b = 5 ta có pt:
\(x^3-5x^2+5x-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x^2-4x+1=0\left(1\right)\end{cases}}\)
Giả sử x1 = 1 là 1 nghiệm của pt ban đầu
x2 ; x3 là 2 nghiệm của pt (1)
Theo Vi-ét \(\hept{\begin{cases}x_2+x_3=4\\x_2x_3=1\end{cases}}\)
Có: \(x_2^2+x_3^2=\left(x_2+x_3\right)^2-2x_2x_3=16-2=14\)
\(x_2^3+x_3^3=\left(x_2+x_3\right)\left(x^2_2-x_2x_3+x_3^2\right)=4\left(14-1\right)=52\)
\(\Rightarrow\left(x_2^2+x_3^2\right)\left(x_2^3+x_3^3\right)=728\)
\(\Leftrightarrow x_2^5+x_3^5+x_2^2x_3^2\left(x_2+x_3\right)=728\)
\(\Leftrightarrow x^5_2+x_3^5+4=728\)
\(\Leftrightarrow x_2^5+x_3^5=724\)
Có \(S=\frac{1}{x_1^5}+\frac{1}{x_2^5}+\frac{1}{x_3^5}\)
\(=1+\frac{x_2^5+x_3^5}{\left(x_2x_3\right)^5}\)
\(=1+724\)
\(=725\)
Vậy .........
Câu 1 đây , lừa người quá
Giả sử pt có 2 nghiệm x1 ; x2
Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=m^2\\x_1x_2=2m+2\end{cases}}\)
\(Do\text{ }m\inℕ^∗\Rightarrow\hept{\begin{cases}S=m^2>0\\P=2m+2>0\end{cases}\Rightarrow}x_1;x_2>0\)
Lại có \(x_1+x_2=m^2\inℕ^∗\)
Mà x1 hoặc x2 nguyên
Nên suy ra \(x_1;x_2\inℕ^∗\)
Khi đó : \(\left(x_1-1\right)\left(x_2-1\right)\ge0\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1\ge0\)
\(\Leftrightarrow2m+2-m^2+1\ge0\)
\(\Leftrightarrow-1\le m\le3\)
Mà \(m\inℕ^∗\Rightarrow m\in\left\{1;2;3\right\}\)
Thử lại thấy m = 3 thỏa mãn
Vậy m = 3
cho pt: \(x^2+ax+b=0. \) tìm a,b hữu tỉ để pt có nghiệm \(x=\sqrt{2} -1\)
Khi pt có nghiệm \(x=\sqrt{2}-1\)
\(\Rightarrow\left(\sqrt{2}-1\right)^2+a\left(\sqrt{2}-1\right)+b=0\)
\(\Rightarrow3-2\sqrt{2}+a\sqrt{2}-a+b=0\)
\(\Rightarrow\left(a-2\right)\sqrt{2}=a-b-3\)
Do a; b hữu tỉ \(\Rightarrow VP\) hữu tỉ \(\Rightarrow VT\) hữu tỉ
Mà \(\sqrt{2}\) vô tỉ nên dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}a-2=0\\a-b-3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\)
1) Cho PT: \(x^2+mx+n=0\left(1\right)\) với m,n thuộc Z
a) CMR: Nếu PT(1) có nghiệm hữu tỉ thì nghiệm đó nguyên
b) Tìm nghiệm hữu tỉ của PT (1) nếu n=3
2) CMR: Nếu số \(\overline{abc}\) nguyên tố thì PT: \(ax^2+bx+c=0\) không có nghiệm hữu tỉ
3)Tìm m thuộc Z để nghiệm của PT \(mx^2-2\left(m-1\right)x+m-4=0\)là số hữu tỉ
4) Tìm nghiệm x, y thuộc Q, x> y thỏa mãn
\(\sqrt{x}-\sqrt{y}=\sqrt{2-\sqrt{3}}\)
1) cho a^3-3ab^2=9,b^3-3ba^2=13
tính M=a^2+b^2
2) có bao nhiêu số nguyên duong n</ 1000 để phân số (n+4)/(n^2+7) tối giản
3) tìm a,b là số hữu tỉ sao cho 1+căn3 là nghiệm của pt x^3+ax^2 +bx+1=0
Gấp nha cám ơn nhiều!
Cho phương trình x2 + ax +b =0 (1) với a,b là tham số nguyên. Giả sử pt(1) có một nghiệm là 2 - \(\sqrt{3}\) . Tìm a và b
Do pt có 1 nghiệm là \(2-\sqrt{3}\)
\(\Rightarrow\left(2-\sqrt{3}\right)^2+a\left(2-\sqrt{3}\right)+b=0\)
\(\Leftrightarrow7-4\sqrt{3}+2a-a\sqrt{3}+b=0\)
\(\Leftrightarrow2a+b+7=\left(a+4\right)\sqrt{3}\)
Vế trái là số hữu tỉ, vế phải vô tỉ nên đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}a+4=0\\2a+b+7=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-4\\b=1\end{matrix}\right.\)
Chứng minh mọi nghiệm hữu tỉ của pt sau đều nguyên: \(x^3+ax^2+bx-6=0\)
Tìm các giá trị của a,b thoả mãn pt đã cho để có 3 nghiệm hữu tỉ dương pb nhỏ hơn 6
tim các số hữu tỉ a,b sao cho \(2+\sqrt{5}\)
là nghiệm của pt x3 +ax2+bx+1
bạn chỉ cần thay vô sau đó ghép \(\sqrt{5}\)thành một nhóm là cho 2 vé đều \(=0\)rồi giải hề