3.1 Cho hàm sốbậc nhấty = (m -2)x +2 ( tham sốm; m≠2) có đồthị(d)a/ Vẽ(d) khi m = 0b/ Tìm m để(d) song song với đường thẳngy = -3x +1c/ Tìm m đểkhoảng cách từgốc tọa độO đến (d) =2/5 Mình cần câu c thôi , giúp mk nhé .
Cho hai hàm sốbậc nhất y=m2 x+m-1 và y=4x+3-m trong đó m là tham số. Tìm tất cả các giá trị của m để đồ thị của hai hàm số đã cho là hai đường thẳng song song với nhau?
Đề hai đường thẳng song song thì \(\left\{{}\begin{matrix}m^2=4\\m-1\ne3-m\end{matrix}\right.\Leftrightarrow m=-2\)
Để 2 đt song song thì
\(\left\{{}\begin{matrix}m^2=4\\m-1\ne3-m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\pm2\\m\ne2\end{matrix}\right.\Leftrightarrow m=-2\)
Cho hai hàm số bậc nhất
y = (m - 1)x + n - 2
y = (1 - 2m)x + 3 + n
Tìm m để 2 đồ thị hàm số trên là 2 đường thẳng
Trùng nhau
a: Để hai đường thẳng trùng nhau thì \(\left\{{}\begin{matrix}m-1=1-2m\\n-2=n+3\left(loại\right)\end{matrix}\right.\)
Vậy: Không có (m,n) nào để hai đường thẳng trùng nhau
Cho hai hàm số bậc nhất
y = (m - 1)x + n - 2
y = (1 - 2m)x + 3 + n
Tìm m để 2 đồ thị hàm số trên là 2 đường thẳng
Trùng nhau
Để hai đường thẳng trùng nhau thì
\(\left\{{}\begin{matrix}m-1=1-2m\\n-2=n+3\left(loại\right)\end{matrix}\right.\)
Cho hai hàm số bậc nhất
y = (m - 1)x + n - 2
y = (1 - 2m)x + 3 + n
Tìm m để 2 đồ thị hàm số trên là 2 đường thẳng :
Trùng nhau
Tìm tổng tất cả các giá trị thực của tham số
m sao cho đường thẳng đi qua hai điểm cực trị của đồ thị hàm số
\(y=2x^3+3\left(m-1\right)x^2+6m\left(1-2m\right)x.\) song song đường thẳng y= -4x
.
Chứng minh công thức tổng quát phương trình đi qua 2 điểm cực trị:
giả sử hàm bậc 3: \(y=ax^3+bxx^2+cx+d\left(a\ne0\right)\) có 2 điểm cực trị x1;x2
Ta đi tìm số dư 1 cách tổng quát:
Ta có: \(y'=3ax^2+2bx+c-và-y''=6ax+b\)
Xét phép chia giữa y' và y'' ta có: \(y=y'\left(\dfrac{1}{3}x+\dfrac{b}{9a}\right)+g\left(x\right)\left(1\right)\) là phường trình đi qua 2 điểm cực trị của đồ thị hàm số bậc 3
từ (1) Ta có: \(y=y'\dfrac{3ax+b}{9a}+g\left(x\right)-hay-y=y'\dfrac{6ax+2b}{18a}g\left(x\right)\)
Từ đây dễ suy ra: \(g\left(x\right)=y-\dfrac{y'.y''}{18a}\left(công-thức-tổng-quát\right)\) ( dĩ nhiên bạn chỉ cần nhớ cái này )
áp dụng vào bài toán ta có:
\(2x^3+3\left(m-1\right)x^2+6m\left(1-2m\right)x-\left(6x^2+6\left(m-1\right)x+6m\left(1-2m\right)\right).\dfrac{12x+6\left(m-1\right)}{18.2}\)
Gán: \(\left\{{}\begin{matrix}x=i\\m=10\end{matrix}\right.\) => 1710-841i
\(\Rightarrow y=4m\left(-2m-1\right)x+17m^2+m\) bài toán quay trở về bài toán đơn giản bạn giải nốt là oke
Cho hai hàm số bậc nhất
y = (m - 1)x + n - 2
y = (1 - 2m)x + 3 + n
Tìm m để 2 đồ thị hàm số trên là 2 đường thẳng :
a. Song song
b. Cắt nhau
c. Trùng nhau
a: Để hai đường thẳng song song thì \(\left\{{}\begin{matrix}m-1=1-2m\\n-2\ne n+3\end{matrix}\right.\Leftrightarrow3m=2\Leftrightarrow m=\dfrac{2}{3}\)
b: Để hai đường thẳng cắt nhau thì \(m-1\ne-2m+1\)
\(\Leftrightarrow3m\ne2\)
hay \(m\ne\dfrac{2}{3}\)
Tìm m để hàm số sau là hàm số bậc nhất
y = \(\dfrac{m+6}{m-7}.x+4\)
ĐKXĐ: \(m-7\ne0\Rightarrow m\ne7\)
Để hàm số \(y=\dfrac{m+6}{m-7}.x+4\) là hàm số bậc nhất thì\(\dfrac{m+6}{m-7}\ne0\Rightarrow m+6\ne0\Rightarrow m\ne-6\)
Vậy để Để hàm số \(y=\dfrac{m+6}{m-7}.x+4\) là hàm số bậc nhất thì\(\left\{{}\begin{matrix}m\ne-6\\m\ne7\end{matrix}\right.\)
Tìm m để các hàm số sau là hàm số bậc nhất
y=(2m-1)x2+(m-1)x-3
\(\Leftrightarrow2m-1=0\)
hay m=1/2
\(\Leftrightarrow\left\{{}\begin{matrix}2m-1=0\\m-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{1}{2}\\m\ne1\end{matrix}\right.\Leftrightarrow m=\dfrac{1}{2}\)
Giúp mình với ạaaa
Cho hai hàm số bậc nhất
y=(2m-1)x+n+1
y=(5-m)x-1-n
Tìm m để đồ thị hai hàm số trên
a) cắt nhau
b)song song
c) trùng nhau
a: Đặt (d1): \(y=\left(2m-1\right)x+n+1\)
(d2): \(y=\left(5-m\right)x-1-n\)
Để (d1) cắt (d2) thì \(2m-1\ne5-m\)
=>\(3m\ne6\)
=>\(m\ne2\)
b: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}2m-1=5-m\\n+1\ne-1-n\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3m=6\\2n\ne-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=2\\n\ne-1\end{matrix}\right.\)
c: Để \(\left(d1\right)\equiv\left(d2\right)\) thì \(\left\{{}\begin{matrix}2m-1=5-m\\n+1=-n-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3m=6\\2n=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=2\\n=-1\end{matrix}\right.\)